
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ENCOUNTER DETECTION USING VISUAL ANALYTICS
TO IMPROVE MARITIME DOMAIN AWARENESS

by

Michael J. Hanna

June 2015

Thesis Advisor:
Thesis Co-Advisor:
Second Reader:

David A. Garren
James W. Scrofani

Steven E. Pilnick

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2015

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
ENCOUNTER DETECTION USING VISUAL ANALYTICS TO IMPROVE
MARITIME DOMAIN AWARENESS

5. FUNDING NUMBERS

6. AUTHOR(S) Michael J. Hanna

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A visual analytics process to detect encounters between vessels from ship position data is developed in this thesis. An
archive of historical position records is pre-processed and filtered to provide input for an encounter detection
algorithm. The algorithm arranges the position records into a set of sorted lists (SSL) so that only a minimum number
of records need to be compared. The algorithm performs a single sweep over the record set to arrange it into a SSL
and simultaneously find the encounters. To avoid problems due to discrete sampling, an interpolation of the data is
performed when the sampling is too sparse. To accommodate large data sets, a divide-and-conquer approach using a
sliding spatial window is developed. In post-processing, the elementary encounters are grouped into composite
encounters by collecting elementary encounters occurring between the same vessels. Additionally, the composite
encounters are input into a visual analytics tool where each composite encounter is represented as a layer on a map.
Patterns of life analysis and investigations of potential anomalous activity are performed by zooming in on encounter
areas of interest. The development of a visual analytics process to identify vessels of interest is the significant result
of this thesis.

14. SUBJECT TERMS maritime domain awareness, encounter detection, visual analytics, activity
based intelligence

15. NUMBER OF
PAGES

143

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ENCOUNTER DETECTION USING VISUAL ANALYTICS TO IMPROVE
MARITIME DOMAIN AWARENESS

Michael J. Hanna
B. S., California Polytechnic University, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2015

Author: Michael J. Hanna

Approved by: Dr. David A. Garren
Thesis Advisor

Dr. James W. Scrofani
Thesis Co-Advisor

Dr. Steven E. Pilnick
Second Reader

Dr. R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A visual analytics process to detect encounters between vessels from ship position data is

developed in this thesis. An archive of historical position records is pre-processed and

filtered to provide input for an encounter detection algorithm. The algorithm arranges the

position records into a set of sorted lists (SSL) so that only a minimum number of records

need to be compared. The algorithm performs a single sweep over the record set to

arrange it into a SSL and simultaneously find the encounters. To avoid problems due to

discrete sampling, an interpolation of the data is performed when the sampling is too

sparse. To accommodate large data sets, a divide-and-conquer approach using a sliding

spatial window is developed. In post-processing, the elementary encounters are grouped

into composite encounters by collecting elementary encounters occurring between the

same vessels. Additionally, the composite encounters are input into a visual analytics tool

where each composite encounter is represented as a layer on a map. Patterns of life

analysis and investigations of potential anomalous activity are performed by zooming in

on encounter areas of interest. The development of a visual analytics process to identify

vessels of interest is the significant result of this thesis.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE ...3
B. RELATED WORK ..3
C. THESIS OUTLINE ..4

II. BACKGROUND ..5
A. ACTIVITY-BASED INTELLIGENCE ...5
B. VISUAL ANALYTICS ..6

1. Intelligence Collection ...7

2. Research Agenda ..8
3. Related Research Efforts ...9
4. Machine Analytics ..12

C. INFORMATION VISUALIZATION ..12
D. DATA MINING, MACHINE LEARNING AND ALGORITHMS13

III. ENCOUNTER DETECTION ...15

A. ENCOUNTER PATTERN ..15

B. MOVEMENT ANALYSIS ..16

C. CONCEPTUAL MOVEMENT MODEL ..18

D. VISUALIZATION OF MOVEMENT ...22

E. ENCOUNTER DETECTION ALGORITHM ..23

F. ENCOUNTER DETECTION VISUAL ANALYTICS PROCESS30

G. SLIDING SPATIAL WINDOW ...33

IV. IMPLEMENTATION AND RESULTS ..39
A. IMPLEMENTATION ...39

1. Pre-processing Data ...39
2. Processing Data ..41
3. Post-processing Data ..45

B. COMPUTATIONAL RESULTS ..47
1. Pre-processing Data ...47
2. Processing Data ..51

C. VISUALIZATION RESULTS ..53
1. Analysis of Visualizations ..53
2. Anomaly Investigations ...59
3. Summary of Results ...66

V. CONCLUSIONS ..67

A. SIGNIFICANT CONTRIBUTIONS ..67

B. RECOMMENDATIONS FOR FUTURE WORK69

APPENDIX ...71

LIST OF REFERENCES ..119

INITIAL DISTRIBUTION LIST ...123

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Maritime domain awareness data flow, from [7]. ..2
Figure 2. Classification of movement patterns, from [31]. ...17
Figure 3. Encounter pattern, from [31]. ...18
Figure 4. Visual representations of trajectories, from [33]. ..19
Figure 5. Visual representation of movement model from, [32].21
Figure 6. Geographic map showing encounters. ...24
Figure 7. Close-up view of an encounter. ...25
Figure 8. Interactive visualization process from, [30]...26
Figure 9. Encounter pattern classifications from, [30]. ...26
Figure 10. Encounter detection visual analytics process data flow.31
Figure 11. Graphical representation of spatial window approach.35
Figure 12. Aisdecoder settings window ..42
Figure 13. Default view of map showing encounters. ...46
Figure 14. Zoomed out view of map showing encounters. ...47
Figure 15. AIS messages processed for February 2011. ...48
Figure 16. AIS messages processed for January 2012. ...48
Figure 17. AIS messages processed for January 2013. ...49
Figure 18. Interpolation processing for February 2011 for N = 60.49
Figure 19. Interpolation processing for January 2012 for N = 60.50
Figure 20. Interpolation processing for February 2011 for N = 30.50
Figure 21. Interpolation processing for January 2012 for N = 30.51
Figure 22. Encounter detection processing for February 2011. ..52
Figure 23. Encounter detection processing for January 2012. ..53
Figure 24. Visualization of encounters in Singapore maritime area (Config 1).55
Figure 25. Visualization of encounters in Singapore maritime area (Config 2).56
Figure 26. Visualization of encounters in Singapore maritime area (Config 3).57
Figure 27. Visualization of encounters in Singapore maritime area (Config 4).58
Figure 28. Visualization of encounters February 15, 2011 (Config 1).60
Figure 29. Visualization of encounters February 15, 2011 (Config 2).61
Figure 30. Visualization of encounters February 16, 2011 (Config 1).62
Figure 31. Visualization of encounters February 16, 2011 (Config 2).63
Figure 32. Example of parallel or head front encounter pattern.64
Figure 33. Example of cross-encounter pattern. ..65
Figure 34. Example of encounter pattern involving multiple vessels.65

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Common reasoning artifacts, from [10]. ..10
Table 2. Movement parameters, from [31]. ...17
Table 3. Classification of objects from, [32]. ..20
Table 4. Record class data format. ...29
Table 5. Parameters and boundary conditions by configuration.36
Table 6. AIS message types, from [38]. ...40

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ABI activity-based intelligence
AIS automated information system

COP common operating picture
CSV Comma -separated values
CWS Coast Watch System

DHS Department of Homeland Security

EDA exploratory data analysis

GIS geographic information science
GNSS global navigation satellite system
GPS global positioning system

HUMINT human intelligence

IC Intelligence Community

KD knowledge discovery

MA machine analytics
MASINT measurement and signatures intelligence
MATLAB Matrix Laboratory
MDA maritime domain awareness
MMSI Maritime Mobile Service Identity
MPO Moving Point Object

NGA National Geospatial-Intelligence Agency
NMEA National Maritime Electronics Association
NRO National Reconnaissance Organization
NSA National Security Agency
NVAC National Visualization and Analytics Center

OUSDI Office of the Undersecretary of Defense for Intelligence

SIGINT signals intelligence
SPIE Society of Photo-Optical Instrumentation Engineers
SSL set of sorted lists

TBA tri-border area

 xiv

USN United States Navy
VA visual analytics

 xv

EXECUTIVE SUMMARY

Activity-based intelligence (ABI) is a recent development in Intelligence Community

(IC) tradecraft for dealing with the ever-increasing volumes of data collected. ABI

represents a paradigm shift from targeted collection efforts to a focus on discovery of

unknown activities [1]. The objective of ABI is to provide analysts with an understanding

of patterns of behavior and to assist analysts with initiating new collection activities or

refining existing collection efforts [2].

ABI tradecraft focuses on the activities and transactions associated with an entity,

a population, or an area of interest [3]. Analysts use data and the related metadata to

identify associations within the data. Patterns of life can be determined using large

collections of association data and its metadata [4, 5].

Maritime domain awareness (MDA) is a United States Navy (USN) concept for

fusing intelligence with situational awareness, which includes all vessels, cargo and

people related to a sea, ocean or other navigable waterway [6]. MDA requires the ability

to monitor activities and transactions of entities to identify trends and anomalies in

behavior. The MDA concept addresses many potential threats to maritime security

including nation-state threats, terrorist threats, criminal and piracy threats, and

environmental and social threats.

Visual Analytics (VA) is a multi-disciplinary research field that focuses on

analytical techniques, data transformations, visual representations and user interactions.

VA research develops new and innovative ways to combine knowledge from data mining

and information visualization with user interfaces to create processes that combine

computer processing with human analysis [7].

In this thesis, ABI tradecraft is developed to improve MDA. The ABI tradecraft is

developed by applying recent VA research in movement to the maritime domain. A

significant result of this thesis research is a VA process to detect maritime encounters

between vessels. An encounter detection algorithm is demonstrated using historical

positions records from an archive of Automated Information System (AIS) data. To

 xvi

accommodate large data sets, a divide and conquer approach using a sliding spatial

window is developed. Post-processing is used to group elementary encounters into

composite encounters. The composite encounters are viewed as layers on a map in a

visual analytics tool. Patterns of life analysis and investigations of potential anomalous

activity are performed by zooming in on encounter areas of interest.

 The encounter detection algorithm contains three key elements. The first element

is scalability of the algorithm for the number of vessels, position records, and the

temporal and spatial resolution of the data. The second element is efficiency of the

algorithm in building the data structure and detecting elementary encounters. The third

element is interpolation of the data to create additional position records.

The ABI tradecraft developed in this thesis was applied to vessels operating in the

tri-border area (TBA) between the Philippines, Malaysia and Indonesia. The TBA was

chosen as a geographic area of interest based on a history of piracy in the region. The

TBA constitutes a single geopolitical space whose security influences the entire

Southeast Asia maritime domain.

An archive of AIS data was explored in this thesis in order to identify potential

vessels of interest (VOIs) and to investigate possible patterns of life in the maritime

domain. The historical position records were pre-processed using AisDecoder software.

The encounter detection algorithm was implemented in MATLAB, and the composite

encounters were investigated using the geographic visualization environment in the V-

Analytics software.

 xvii

LIST OF REFERENCES

[1] C. Johnston (2013). Modernizing defense intelligence: object based production
and activity based intelligence [PowerPoint slides]. Retrieved from
https://info.publicintelligence.net/DIA-ActivityBasedIntelligence.pdf,” 2013.

[2] D. Meyerriecks (2012). Empowering intelligence integration: the (future) role of
ground [PowerPoint slides]. Retrieved from http://gsaw.org/wp-
content/uploads/2013/07/2012s08meyerriecks.pdf

[3] M. Phillips, (2012, Sept. 28). A brief overview of activity based intelligence and
human domain analytics, Trajectory [Online].
http://trajectorymagazine.com/defense-intelligence/item/1369-human-domain-
analytics.html

[4] K. L. Barber, “NSG expeditionary architecture: harnessing big data,” National
Geospatial-Intelligence Agency Magazine: Pathfinder, vol. 10, no. 5, pp. 8–10,
Sept./Oct. 2012.

[5] T. D. Lash, “Uses of motion imagery in activity-based intelligence,” Proc. SPIE,
2013, vol. 8740, 874005 (May 16, 2013).

[6] U.S. Department of Homeland Security (DHS), “National plan to achieve
maritime domain awareness for the national strategy for maritime security,” DHS,
Washington, DC, Oct. 2005.

 [7] J. J. Thomas and K. A. Cook, Illuminating the Path: The Research and
Development Agenda for Visual Analytics. Los Alamitos, CA: IEEE, 2005.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The Office of the Undersecretary of Defense for Intelligence (OUSDI) defined

Activity-based intelligence (ABI) as “a discipline of intelligence where the analysis and

subsequent collection is focused on activity and transactions associated with an entity,

population, or area of interest” [1, 2]. ABI is a recent development in tradecraft with a

focus on discovery and association of unknown activities [3]. ABI provides

understanding for patterns of behavior that enable analysts to initiate new collection

activities or refine existing efforts [4].

Analysts develop ABI by identifying associations within the data. Analysts use

activity data and the related metadata to identify entities of interest and develop patterns

of life [1, 2]. ABI consumes volumes of data in order to characterize and relate activities

and transactions [5].

The tradecraft of ABI is applied in this thesis to the United States Navy (USN)

concept of maritime domain awareness (MDA). MDA is “the effective understanding of

anything associated with the global maritime domain that could impact the security,

safety, economy, or environment of the United States” [6]. The maritime domain is

defined as “all areas and things of, on, under, relating to, adjacent to, or bordering on a

sea, ocean, or other navigable waterway, including all maritime-related activities,

infrastructure, people, cargo, and vessels and other conveyances” [6].

The USN MDA concept relies upon the fusion of intelligence with situational

awareness. The observable information for vessels, people, facilities, cargo,

infrastructure, sea lanes, threats, friendly forces and weather are the inputs to a Collect,

Fuse, Analyze and Disseminate data flow process shown in Figure 1 [7].

The research for this thesis utilizes a historical archive of position records derived

from the Automated Information System (AIS) and the Global Positioning System (GPS)

[8]. The position records used in this research were collected by two commercial satellite

corporations that archive and sell AIS data [9]. ORBCOMM and exactEarth corporations

 2

collect AIS position reports by employing low Earth orbit satellites to collect reports

globally.

Since there is very limited information available to the public about ABI, recent

research in visual analytics (VA) is incorporated to develop ABI tradecraft in support of

the USN MDA concept. VA is defined by the National Visualization and Analytics

Center (NVAC) as “the science of analytical reasoning facilitated by interactive visual

interfaces” [10].

A visual analytics process in support of the USN MDA concept is developed by

applying recent VA research in movement and the maritime domain. The VA process

detects elementary encounters between maritime vessels using an archive of AIS data.

Post-processing is used to group elementary encounters into composite encounters.

Composite encounters are investigated using a visual geographic environment.

Figure 1. Maritime domain awareness data flow, from [7].

 3

A. THESIS OBJECTIVE

In this thesis, ABI tradecraft is developed in support of MDA. The objective of

this thesis is to develop a VA process to support the USN MDA concept. A recently

published encounter detection algorithm from [11] is incorporated into a VA process.

The VA process consists of the following activities. Preprocessing of position

records is performed using AisDecoder software. The encounter detection algorithm is

executed using MATLAB. Post-processing in MATLAB is used to group elementary

encounters to into composite encounters. Encounters are investigated using the

geographic visualization environment in V-Analytics.

B. RELATED WORK

The related work for this thesis is previous research in MDA. Recent work

includes previous thesis research performed at the Naval Postgraduate School (NPS).

Analytical techniques and visual representations of vessel interactions were investigated

by Tester in [8]. Tester developed a spatiotemporal algorithm using a k-means proximity

filter to create a kinematic clustering of vessels based on similarity in course, speed, and

distance. Techniques for anomaly detection in MDA were the focus of McAbee in [9].

McAbee developed a Hough transformation to generate atlases to represent normal vessel

traffic patterns.

The application of VA principles to the maritime anomaly detection problem was

the focus of Riveiro and a research team [12] at Orebro University in Sweden. Field

research at three different maritime control centers was performed in order to understand

the human factors requirements for a maritime anomaly detection system. A prototype

system known as VISAD was developed that automatically provides an operator with

visual models for normal vessel behavior.

Multi-sensor data fusion work in MDA includes the development of sensor data

fusion architecture as described in [13]. An object-oriented sensor data fusion

architecture that combined tracking data from video, radar and AIS sources was

developed to create visualizations for situational awareness.

 4

Maritime vessel traffic was investigated using density maps in [14]. Density maps

were applied using a time-varying kernel to visualize vessel traffic patterns based on time

of day and also to detect anomalous vessels operating outside of normal traffic patterns.

Tominski et al. proposed a novel visualization technique for viewing spatio-temporal data

in [15]. The principle involved the use of stacked trajectory bands to provide a temporal

representation of attribute values on a map and the introduction of a time lens to view the

detailed temporal data. A maritime example included a comparison in tortuosity, the rate

of change of headings, between incoming and outgoing vessels near ports.

Researchers in Canada performed a comprehensive review of VA literature and

tools to address the need for a Recognized Maritime Picture (RMP) [16]. In addition to an

annotated bibliography of 146 references, the review also provides a profile of the VA

research community and supporting organizations.

 The Embedded Systems Institute conducted project, known as POSEIDON, on

maritime domain awareness from June 2007 to May 2012 as described in [17]. The

POSEIDON project developed an architectural framework and prototype systems of

systems (SoS) to improve maritime domain awareness. Additionally, the POSEIDON

project developed methods for anomaly detection by mining vessel trajectory data.

 A literature review of foundational technologies for ABI was reported in [18].

This literature review provides a survey of algorithmic-level literature that has been

applied to ABI analysis.

C. THESIS OUTLINE

Background information on ABI, VA, information visualization and data mining and

algorithms are included in Chapter II. The encounter detection algorithm and its

implementation in MATLAB are developed in Chapter III. The VA process and the

investigation of an archive of AIS data are described in Chapter IV. Considerations for future

research and a summary of the research performed for this thesis are included in Chapter V.

The MATLAB code developed for this thesis research is included in the Appendix.

 5

II. BACKGROUND

Research for this thesis applies the concepts of ABI and VA to the USN MDA

concept. The principles of ABI that were introduced in the previous chapter are discussed

in the first section of this chapter. The history and concepts of VA that were also

introduced in the previous chapter are discussed in the second section. An introduction to

information visualization is provided in the third section, and an introduction to data

mining, machine learning and algorithms is provided in the fourth and final section of

this chapter.

A. ACTIVITY-BASED INTELLIGENCE

The Office of the Undersecretary of Defense Intelligence (OUSDI) defined the

tenets of ABI in 2010 with the release of the first two strategic guidance papers [19]. The

papers introduced ABI as a new discipline of intelligence that focuses analysis and

subsequent collection on the activity and transactions associated with an entity, a

population, or an area of interest.

With ABI, intelligence collection has shifted its focus from specific military

targets to the actions and movements of individuals [19]. ABI has generated interest

throughout the Intelligence Community (IC) and is a “natural evolution” that has taken

place since the Cold War, according to Robert Zitz, a former senior executive with the

National Geospatial-Intelligence Agency (NGA), National Security Agency (NSA) and

the National Reconnaissance Organization (NRO) [20].

On May 1, 2013, during the Society of Photo-Optical Instrumentation
Engineers (SPIE) symposium of Defense, Security and Sensing, Director
Letitia Long, said the NGA is using ABI to “identify patterns, trends,
networks and relationships hidden within large data collections from
multiple sources: full-motion video, multispectral imagery, infrared, radar,
foundation data, as well as Signals Intelligence (SIGINT), Human
Intelligence (HUMINT) and Measurement and Signatures Intelligence
(MASINT) information.” [21]

There are similarities between ABI principles and the USN MDA concept. MDA

analysts and maritime operation centers (MOC) persistently monitor, access, and

 6

maintain information on vessels, cargo, crew and passengers [8]. The MOC collects,

fuses, analyzes and disseminates intelligence information; however, the ABI concept is

larger than the USN MDA concept.

The principles of ABI can be summarized by the following five elements:

1. Collect, characterize and locate activities and transactions.

2. Identify and locate actors and entities conducting the activities and
transactions.

3. Identify and locate networks of actors.

4. Understand the relationships between networks.

5. Develop patterns of life. [19]

ABI tradecraft brings the focus on entities and their activities and transactions to

the forefront of analytical processes [5]. As explained by Phillips [19]: “The intention of

ABI is to develop patterns of life, to determine which activities and transactions are

abnormal, and to seek to understand those patterns to develop courses of action. ABI is

focused on understanding relationships between various entities and their activities and

transactions.”

ABI is focused on resolving entities based on analysis of activities and

transactions [5]. Activities and transactions for entities are characterized by analyzing

large collections of data. An activity is an expression of change such as movement. A

transaction is the exchange of something.

In this section, an overview of ABI tradecraft was provided. For a more detailed

study of ABI tradecraft refer to [18]. In the next section, a brief history and the principles

of VA are discussed.

B. VISUAL ANALYTICS

Before introducing the research agenda for VA, a brief overview of intelligence

collection is provided. The changing requirements for intelligence collection are at the

forefront of the VA research agenda and also led to the establishment of the ABI

tradecraft discussed in the previous section.

 7

1. Intelligence Collection

The results of a study published in 2004 [22] addressed two related problems in

intelligence collection:

1. The inability to identify and retain all potentially useful data that is
collected due to a lack of understanding of future utility and the need to
reduce the overall massive volume of data.

2. The inability to find relevant data when viewed in a future context that
was not understood when initially collected.

The study incorporated two techniques from commercial fraud detection to

improve the detection of rare events and to create strong supporting evidence from the

aggregation of otherwise weak data. The first technique was the use of historical data to

investigate multiple hypotheses. The second technique was using results to refine existing

collections or to initiate new collections.

The study also characterized the information processing data flow from the

perspective of the analyst. The traditional data processing flow for intelligence collection

is a “detect and track” scheme for the following process:

1. Filter all information being gathered, and save only the information that is
needed for the immediate problem.

2. Detect individual facts in the data (i.e., people, places, things and simple
relationships between them).

3. Process the results with queries built to uncover “gold nuggets” of
intelligence information.

4. Track and report changes in the status of the information. [22]

An approach that inverts the traditional data flow is concept-based information

processing [22]. Concept-based information processing uses a “track before detect”

scheme with the following process:

1. Catalog and save all information being gathered based upon individual
facts in the data.

2. Populate many parallel hypotheses with the facts.

3. Detect when hypotheses collect enough supporting facts to cross a
threshold and report the fact.

 8

4. Continue to aggregate evidence along the hypotheses, and report any
changes.

5. Adapt and refine initial concepts. [22]

2. Research Agenda

New approaches to information processing were also a focus of the U.S.

Department of Homeland Security (DHS). In 2004, the U.S. DHS chartered the National

Visualization and Analytics Center (NVAC) to define a long-term research agenda for

VA [10]. The research agenda for VA was developed under the leadership of the Pacific

Northwest National Laboratory (PNNL).

VA is “the science of analytical reasoning facilitated by interactive visual

interfaces” [10]. Analysts use VA tools and techniques to gain insight from massive data

sets. VA tools and techniques help detect the expected and discover the unexpected.

VA is a multi-disciplinary research field with the following focus areas:

1. Analytical reasoning techniques to directly support decision making.

2. Visual representations and interaction techniques to explore large amounts
of information at once.

3. Data representations and transformations that support visualization and
analysis.

4. Techniques to support production, presentation and dissemination of
results. [10]

VA aims to create software systems to support the analytical reasoning process

[10]. The analytical process consists of collecting and organizing information towards

judgment about a question. Throughout the process, the analyst identifies or creates

pieces of information that contribute to reaching a defensible judgment. The pieces of

information are referred to as reasoning artifacts. A summary of common reasoning

artifacts is shown in Table 1.

VA research is focused on improving analytic discourse. Analytics discourse is

“the technology-mediated dialogue between an analyst and his or her information to

produce a judgment about an issue [10].”

 9

The analyst’s information consists of the following:

1. Understanding of the question being answered.

2. Information gathered which may or may not be relevant.

3. Analyst’s knowledge including assumptions, hypotheses and arguments.
[10]

Analytic discourse is the process to assemble evidence and assumptions on the

path to articulate a judgment [10]. VA research seeks to leverage both the strength of the

computer processing and the human analyst to improve analytic discourse. VA tools

support analytic discourse for data retrieval, navigation and discovery.

3. Related Research Efforts

Prior to 2005 and the research agenda for VA, the concepts for VA were seen in

research efforts in information visualization, geographic information science (GIS),

geovisualization and data mining [23]. GIS is research in graphical representations of

geographic information, while research in geovisualization aims to speed up the graphical

display of geographic information using novel maps.

 Previous research in GIS and geovisualization provides a foundation for current

research in VA. Current research in VA is focused on the following principles:

1. Emphasis on data analysis, problem solving, and/or decision making.

2. Leveraging computational processing by applying automated techniques
for data processing and knowledge discovery.

3. Active involvement of a human in the analytical process through
interactive visual interfaces. [23]

A recent focus of the VA research community is VA methods for spatial-temporal

information. A research agenda to address the challenges in working with space and time

was published in 2009 [23]. One of the challenges for working with space and time is that

dependencies in observations prohibit the use of standard statistical analysis, which

assumes independence among observations. Spatial and temporal dependence, however,

provide opportunities for data processing and analysis. Spatial and temporal dependence

allow for the following data operations:

 10

Table 1. Common reasoning artifacts, from [10].

·~ " Ill "lll~~·:ru.I* "IH'r ~.Iti•Lllii-1.·~--· l::i.'l~l~l:rit • LiJJJ•ll[olj]

Source An individual piece of intelligence (e.g., a document, photograph, signal, sensor
Intelligence reading) that has come to the analyst's attention through a collection or retrieval activity.

Relevant Source intelligence that is believed to be relevant to the issue and usable for con-
Information structing arguments and judgments.

Assumption An asserted fact, and its basis, that will be used for reasoning. Assumptions must be
managed separately from evidence, as sound practice demands their critical inspec-
tion. An assumption may come from the analyst's prior knowledge, an earlier
conclusion or product of an analysis, or a key, presently unknowable presumed fact
that allows judgment to progress despite a gap in knowledge.

Evidence The information or assumption takes on argument value when the analyst assesses
its quality, accuracy, strength, certainty, and utility against higher-level knowledge
artifacts such as hypotheses and scenarios. Assessing the utility can be as simple as
judging if the evidence is consistent or inconsistent with a hypothesis or scenario
or if the evidence argues for or against an inference.

lil"·l i r::rmr:Til n r.r.n:~r:r.m r.r:; 1:'\r: l :.j. ~· l :.j, ~ j UE:w f':r.'H r:::r.~ rr•r.11~rt'ih • I • 11 • 1 iToTil

Patterns and Relationships among many pieces of data to form evidence. Analysts often create
Structure tables, charts, and networks of data to detect and extract pattern or structure.

Temporal Temporal relationships and spatial patterns that may be revealed through timelines
and Spatial and maps. Changes in pattern, surprising events, coincidences, and anomalous tim-
Patterns ing may all lead to evidence recognition. The simple act of placing information on a

timeline or a map can generate clarity and profound insight.

l.i.li-1 11:-J 101.• 11~~ 1"::1 ~ r:!:ffir.r.TI"'J:1i71Tii ~

Arguments Logical in fe rences linking evidence a nd other reasoning artifacts into defensible
judgments of greater knowledge value. Extensive formal systems, such as predicate
calculus, give a solid in fe rential basis.

Causality Specialized inference about time, argument, and evidence that makes the argument
that an event or action caused a second event or action. Causality is often critical to
assessments. It is also a source of many biases and errors, and demands careful review.

Models of A means of encoding a complex problem by understanding logic and applying it to
Estimation evidence, resulting in a higher-level judgment that estimates the significance of avail-

able evidence to the issue at hand. Some important classes of models are utili ty
models (which estimate the value of a potential action to an actor using multiple
weighted criteria), indicator models (used to estimate if outcomes of interest may be
in the process of development), behavioral models (of individual and group dynam-
ics), economic models, and physical models. Specialized analytic activity may involve
research using models, simulation, and gaming. A repertoire of basic problem mod-
eling and structuring techniques is invaluable to the analyst.

~~11:-J• t-: •II II •l~if.1i71Tii~
r-- .. - -

Hypothesis A conjectured explanation, assessment, or forecast that should be supported by the
evidence.

Scenarios Sequences of informaLion wiLh "sLOry" value in explaining or defending pan of a
or Scenario judgment chain. For example, a threat scenario might address a target, method,
Fragments actor, motive, means, and opportunity.

 11

1. Interpolation and extrapolation to fill gaps in incomplete data.

2. Integration of information from multiple sources using references to
common spatial-temporal information. [23]

VA research assumes that interactive visual representations of information can

improve natural human capabilities for detecting patterns, making connections and

creating inferences from data [23]; however, to validate the contributions of VA research

to information processing, it is necessary to identify a way to measure the effectiveness

of different approaches. An example effectiveness assessment involved presenting a user

the same task but displaying the spatio-temporal information in three different ways.

Three commonly used but computationally different ways of displaying spatio-

temporal information are:

1. A static small multiple map display.

2. A non-interactive animation.

3. An interactive animation with varying animation speeds. [23]

A study of users showed that users tested on a static small multiple map display

seemed more focused on “states” and “spatial patterns” instead of events and time [23],

while users with the animation displays focused on change and events instead of spatial

patterns. Another finding from the user study was that novel interface tools are not

necessarily used by the user to complete the task even though it would aid in the task.

Another challenge in working with spatio-temporal information is the processing

and display of large data sets. A direct approach is to provide a visual depiction of each

record in a data set within an interactive environment [23]. An alternative approach is to

apply data aggregation and summarization methods to the data set prior to visualization.

Another alternative is to apply more sophisticated computational methods to

automatically extract specific patterns prior to visualization.

Despite the progress that has been made in VA research spatio-temporal data

presents the following new challenges:

1. Large data sets.

2. Dynamic data in real-time.

 12

3. Combining data of diverse types. [23]

4. Machine Analytics

VA research can also be identified as a category within machine analytics (MA).

The analysis tasks of data mining and data fusion are supported by MA [24]. MA

contains the fields of descriptive, predictive and prescriptive analytics. Descriptive

analytics use historical and current data to analyze a situation. Predictive analytics infer

future trends, behavior and events to support decision making. Prescriptive analytics

determine courses of action using historical, current and projected information for a

prescribed set of objectives requirements or constraints.

MA also contains, in addition to VA, the fields of scientific and information

visualization [24]. Scientific visualization applies to data with natural geometric

structures, while information visualization is for visualizing abstract data structures.

Within the categories of MA, the research in VA is unique in its emphasis of user

interaction for the collection, exploitation and dissemination of data.

C. INFORMATION VISUALIZATION

Information visualization is the application of visualization techniques to data.

Visualization is “the communication of information using graphical representations” [25].

Visualization provides the ability to comprehend huge amounts of data [26].

Visualization provides both qualitative and quantitative visual representations of

information [25]. Visualizations allow the previously hidden emergent properties of a

data set to be perceived [26].

The visualization process consists of several stages. The first stage is the

collection and storage of data [26]. Visualization can incorporate data from a wide variety

of sources and may be simple or complex in its construction [25]. Visualization can be

used for exploration of data, to confirm a hypothesis or to present results. The next stage

is a pre-processing stage to transform the data so it can be easily manipulated [26]. The

pre-processing stage can also include data reduction in order to focus on only certain

aspects of the data. The third and final stage in the visualization process consists of

mapping the pre-processed data to a visual representation. The visual representation can

 13

also include a user interface to allow for the transformation of the mapping or to alter the

view of the data for the user.

Visualization is often used as part of a larger process such as exploratory data

analysis (EDA), knowledge discovery (KD) or visual analytics (VA) [25]. Visualization

and analysis are both used to build models that represent or approximate the data set.

Visualization is used to discover new knowledge and identify patterns, anomalies and

trends.

Before introducing data mining in the next section, a brief overview of the KD

process is presented here. The first step in the KD process is data integration,

warehousing and selection [25]. This step involves identifying data sets for analysis and

performing any filtering, sampling and aggregation prior to data mining. The next step is

data mining where an algorithm analyzes the data set in order to produce a model. After

data mining, the results are presented to the user using visualization.

D. DATA MINING, MACHINE LEARNING AND ALGORITHMS

Data mining is the process to create knowledge from a large collection of data

[27]. Descriptive data mining characterizes properties of data, while prescriptive data

mining performs induction to make predictions. There are five distinct functions that data

mining performs:

1. Characterization and discrimination of data.

2. Frequent pattern mining for associations and correlations.

3. Classification and regression analysis of data.

4. Clustering analysis of data.

5. Anomaly detection in data. [27]

Data mining is most closely associated with machine learning. Machine learning

investigates how computer performance can be improved based on large data sets [27].

Machine learning research focuses on the automatic recognition of patterns and

intelligent decision making by computers. There are four types of machine learning:

1. Supervised learning from labeled data; same as classification.

 14

2. Unsupervised learning for unlabeled data; same as clustering.

3. Semi-supervised learning use both labeled and unlabeled data.

4. Active learning involves the user in the learning process. [27]

Integral to any computational problem solving process is the use of computer

algorithms [28]. A computer algorithm is “a set of steps to accomplish a task that is

described precisely enough that a computer can run it.” There are two key principles to

using computer algorithms to solve computational problems:

1. Algorithm always produces a correct solution to the problem.

2. Algorithm uses computational resources efficiently. [28]

The primary resource that determines efficiency in algorithms is time. There are

five factors that affect the amount of time an algorithm requires to complete:

1. Speed of the computer used for processing data.

2. Programming language in which the algorithm is implemented.

3. Compiler or interpreter that translates the code.

4. Skill of the programmer who writes the program.

5. Other activity taking place on the computer at the same time. [28]

These factors are for the case of an algorithm that runs entirely in computer

memory on a single computer [28].

 15

III. ENCOUNTER DETECTION

Encounter detection and the visual analytics process to create visualizations are

the focus of the research performed for this thesis. Within this chapter, the encounter

pattern is introduced along with an overview of movement analysis. A conceptual model

for movement is presented along with an introduction to encounter detection. Following

an introduction to the visualization of movement, we present the encounter detection

algorithm and visual analytics process. A discussion of the spatial window approach to

encounter detection is provided in the final section as a conclusion to this chapter.

A. ENCOUNTER PATTERN

The encounter pattern is an example of a motion pattern for a group of Moving

Point Objects (MPOs) [29]. MPOs are used to represent a wide range of diverse

phenomena including animals in habitat and migration studies, vessels in a maritime

environment and agents simulating people for modeling crowd behavior. The motion of

MPOs can be represented by a series of observations consisting of a triple of

identification, location and time.

An encounter is defined by Laube [29] as an extrapolated meeting between two or

more vessels within some range R. The encounter consists of a set of m MPOs at interval

i with vectors intersecting within a range R of radius r. An approach proposed by Laube

to detect encounters was to solve a geometric problem using a simple algorithm that can

be solved in O(n4) time. The notation O(n4) time describes the asymptotic growth in run

time due to growth in the number of inputs being processed is given by the number of

input values n raised to the fourth power

An encounter “refers to objects being close to one another in space and time”

[30]. Further classification of encounters can be accomplished using additional attributes

of MPOs such as direction and speed. The classification of encounters is domain

dependent, and encounter detection in different domains requires different spatial and

temporal windows.

 16

In this thesis, encounter patterns found in historical AIS data are investigated to

develop patterns of life for the maritime domain. Developing patterns of life is a key

principle in the development of ABI tradecraft. By using historical AIS data, we followed

a “track before detect” approach using the encounter pattern as a hypothesis to be

investigated. The process of using a visual and interactive environment for exploring

encounters follows an approach similar to previous VA research in the maritime domain.

B. MOVEMENT ANALYSIS

MPOs are entities where the position changes over time as reported by Dodge in

[31]. MPOs are considered to be moving points with paths through space and time that

can be visualized and analyzed.

The encounter pattern is just one of many patterns classified by Dodge in [31].

Dodge classifies the encounter pattern as a spatio-temporal pattern within a parent group

of compound patterns. Compound patterns and primitive patterns are the groups within a

category referred to as generic patterns. Dodge’s classification approach divides all

patterns between a category of generic patterns and a category of behavioral patterns.

Dodge’s proposed classification of movement patterns is shown in Figure 2.

Movement can also be decomposed into a series of elements referred to as

movement parameters [31]. The three major groups of movement parameters are shown

in Table 2. The historical position records used in this research contain both the spatial

primitive of position (x,y) and the temporal primitive of instance (t). The archive of

historical position records contains the position of each MPO for a series of timestamps.

The timestamps are recorded by the satellite’s GPS as they collect the AIS messages

received.

In the context of movement analysis an encounter refers to moving to and meeting

at the same location [31]. The encounter pattern is a specific instance of a convergence

pattern. A convergence pattern may differ from an encounter pattern because not all

MPOs need to arrive at the same time. A visual representation of the encounter pattern

used in movement analysis is shown in Figure 3.

 17

Figure 2. Classification of movement patterns, from [31].

Table 2. Movement parameters, from [31].

 18

Figure 3. Encounter pattern, from [31].

C. CONCEPTUAL MOVEMENT MODEL

Behaviors in movement can only be understood by considering relations

occurring between MPOs and the environment [32]. The environment also referred to as

the spatio-temporal context includes the following:

1. Complex and heterogeneous physical space.

2. Complex and heterogeneous physical time.

3. Static and dynamic objects existing in space.

4. Events occurring over time. [32]

Visual representations of movement on a map allow a human analyst to see the

relationship between movement and the spatial context [32]; however, maps do not

 19

present temporal information unless the map is animated. The spatial track of an MPO

can be represented by a trajectory [33]. Trajectories include all the positions occupied by

the MPO between the start and end of movement.

Two visual representations of a trajectory are shown in Figure 4. On the left is an

image showing the direction of trajectories using directional arrows. On the right is an

image that additionally shows speed which is indicated by the width of the lines.

Figure 4. Visual representations of trajectories, from [33].

In defining a conceptual model there are three fundamental sets that are pertinent

to movement: space S (set of locations), time T (set of instants), and objects O [32]. A

classification of objects according to their spatial and temporal properties is shown in

Table 3.

An encounter is a spatial event between two movers that have certain positions in

space and in time. The encounter detection process identifies the encounter pattern when

it occurs. Data mining is used to extract the encounter pattern from the large collection of

data in the historical AIS archive. Trajectories are created for movers for the times when

the encounter pattern is detected. In the case where more than two movers are involved in

an encounter, additional trajectory pairs are defined until all have been accounted for.

 20

Table 3. Classification of objects from, [32].

A trajectory can be described by a mapping from T(time) to S(space) which is

represented mathematically as

 T S (1)

for an MPO [32]. The trajectory contains the positions and the respective times when an

MPO was observed. The functional mapping states that for a given time there can be at

most one position in space. A trajectory is composed of a sequence of spatial events (t,s).

A spatial event represented by equation (1) consists of pairs

 (,), ,t s t T s S (2)

Concept Superior

concepts

Properties Examples

Spatial object Object Has a certain position in

space (a location or set of

locations, not necessarily

continuous)

Building, village, rainfall,

deer, lynx, a deer at a

river, a lynx chasing a

deer

Event

 (temporal object)

Object Appears and/or disappears

during the time period

under analysis, i.e. has a

certain position in time (a

time unit or a sequence of

time units)

Rainfall, a deer at a

river, a lynx chasing a

deer, sunset, winter

Spatial event

(spatio-temporal

object)

Spatial object,

event

Has certain positions in

space and in time

Rainfall, a deer at a

river, a lynx chasing a

deer

Static spatial

object

Spatial object The spatial position in

constant; exists during the

whole time period under

analysis

Building, village, river

Mover

(moving object)

Spatial object The spatial position changes

over time

Deer, lynx, a lynx

chasing a deer

Moving event Mover, event Exists during a sequence of

time units (i.e. not instant);

the spatial position changes

over time

A lynx chasing a deer

 21

where each pair defines a particular position s in space and a particular position t in time

[32]. Movement events refer to elementary and composite spatial events for MPOs. In

adopting these definitions, the individual spatial events associated with an encounter are

known as elementary encounters, and the collection of elementary encounters between

two movers are known as composite encounters [11]. A visual representation of the

movement model defined previously in Table 3 is shown in Figure 5.

Figure 5. Visual representation of movement model from, [32].

The encounter detection process detects encounters using position records from

historical AIS data. The encounter detection algorithm finds the encounter pattern using

only the trajectory attributes of space S and time T shown in Figure 5. The algorithm does

not require any other attributes A shown in Figure 5.

Movement data can be represented by the movement function

 22

 : O T S (3)

that emphasizes that for each object at a given time T there is at most one location S in

space that it occupies [34]. The functional mapping shows that the position S is

dependent upon a specific object O at a specific time T.

Movement data from a data set may be given only for a limited number of time

units where the set T in

 ()O T S (4)

is finite and often quite small [34]. To increase the cardinality of the set T, interpolation is

performed to estimate the spatial position of movers in intermediate time units between

the measurements. Interpolation is allowed due to spatial and temporal dependence in

movement data. Positions created using interpolation may not be valid when there are too

few measured positions, and they are separated by large time intervals.

Movement data may also be divided so that only a part of the trajectory for a

given mover is analyzed [34]. The movement data can be represented as

 1 2(() () ... ())kO T S T S T S (5)

Where T1, T2,…,Tk are non-overlapping subsets of the original time T in equation (4).

Generally, it is not necessary that the union of T1, T2,…,Tk equals T. Movement data may

be spliced and recombined as necessary to support processing.

When comparing the positions of movers in space, it is not meaningful to only

consider two movers as being in the same place only when the coordinates are exactly the

same [34]. For this reason, two positions in space should be considered as the same space

if they are sufficiently close in space.

D. VISUALIZATION OF MOVEMENT

Visualizations of trajectories are difficult to comprehend for large data sets due to

the large number of movers and long periods of time [34]. Prior to creating visualizations

a large data set can be aggregated or filtered. Prior thesis research at NPS focused on

aggregation approaches for processing large data sets [8, 9]. Aggregation of data using

techniques such as clustering are a common type of data mining.

 23

In this thesis pattern mining approaches for processing a large data set are

investigated. Specifically, the use of an encounter detection algorithm for processing an

archive of historical AIS data is investigated. Trajectory data is created when an

encounter is detected between two movers. This trajectory data supports visualization and

analysis.

To explore a large amount of data at once, an interactive dynamic data filter is

implemented [11]. The filter is implemented by importing trajectories for each encounter

into the V-Analytics software as a layer on a geographic map as shown in Figure 6.

Additional filtering includes a spatial filter created by drawing a rectangle frame in the

area of interest on the map display. A closer look at an encounter using a spatial filter is

shown in Figure 7.

E. ENCOUNTER DETECTION ALGORITHM

The encounter detection algorithm arranges the position records into a set of

sorted lists (SSL) so that only a minimum number of records need to be compared [30].

The algorithm performs a single sweep over the record set to arrange it into a SSL. The

algorithm is embedded within an interactive visualization process as shown in Figure 8.

The algorithm assumes the record set is in chronological order and requires that if the

record set is not in chronological order that it be sorted at the beginning of processing.

The main encounter detection parameters that can be configured are the temporal

window (ΔT) and the spatial window (ΔS) [30]. For this research, two values were

selected for the temporal window ΔT and two values selected for the spatial window ΔS.

These values provide a total of four different configurations for the encounter detection

algorithm. The value of 30 seconds for the temporal window ΔT was chosen because it

was reported in [30], and the value of 60 seconds was chosen because it was reported in

[11]. The value of 0.2 nautical mile (nm) for spatial window ΔS was chosen because it

was reported in [11]. The value of 0.1 nm for spatial window ΔS was chosen to provide a

second value for investigating the role of spatial sensitivity in encounter detection.

 24

Figure 6. Geographic map showing encounters.

 25

Figure 7. Close-up view of an encounter.

 26

Figure 8. Interactive visualization process from, [30].

Figure 9. Encounter pattern classifications from, [30].

 27

Characterization of encounters is required to identify entities, activities and

transactions. The encounter detection algorithm does not automatically characterize

encounters detected. Encounters are investigated and then characterized using a

visualization in an interactive environment. Example patterns used for characterization

are shown in Figure 9.

In Figure 9, each spatial event is represented by a solid triangle, where all spatial

events for a trajectory of an MPO are shown in the same color (black or green). The path

of the MPO is shown by connecting lines of the same color (black or green) between each

of the spatial events. Encounters are represented in this example by a connecting blue line

between the two MPOs involved in each encounter.

The four encounter patterns shown in Figure 9 can be identified using the

velocity, the angle between the movement vectors of the MPOs and duration of the

encounter [11]. For the parallel encounter pattern shown in Figure 9(a), the angle

between the movement vectors should be approximately 0 degrees, and the duration of

the encounter is expected to be long. For the cross-encounter pattern shown in Figure

9(b), the angle should be between 0 and 180 degrees with a short duration. The head-on

encounter pattern shown in Figure 9(c) is similar, with the restriction that the angle is

approximately 180 degrees. Finally, the parking encounter pattern shown in Figure 9(d),

is at a low velocity, the duration of the encounter is expected to be long, and the angle of

the encounter is not relevant.

There are three possibilities for specifying what an encounter algorithm finds and

reports for a given record set [35]. In one case, we simply want to determine if an

encounter pattern is present for a record set and report one example encounter. In a

second case, we want to find and report all occurrences of the encounter pattern. For a

third case, we want to report the largest size subset of encounters that meet the criteria for

the encounter pattern. An encounter detection algorithm to meet the requirements of the

second case that finds all occurrences of the encounter pattern is investigated in this

thesis.

 28

Recall, in the beginning of this chapter, an exact solution for the encounter

algorithm was previously discussed as requiring O(n4) time. For run times specified in

asymptotic notation, reducing the exponent in n4 provides the greatest improvement when

processing large record sets [35]. The asymptotic run times do not include interpolation

of data points, and the algorithm being discussed only detects encounter patterns using

spatial and temporal information already within the record set.

Asymptotic run times have also been derived for an approximation of the

encounter pattern where the encounter pattern is defined as a set of MPOs within a range

R of one another. One approach to an encounter detection algorithm is to check all

possible pairs of position records in order to identify the occurrence of encounters [30].

This approach is equivalent to performing a linear search on the record set. The

asymptotic run time for a linear search is O(n2) [28]. This asymptotic run time is the same

as that required for a three-dimensional nearest neighbor query search [35]. Run time

performance can be improved through the use of an approximate nearest neighbor query

structure combined with the logarithmic method also known as a binary search method.

The asymptotic run time in this case is O(n lg n). The asymptotic run times discussed

here assume that the record set has sufficient spatial and temporal resolution to allow for

an encounter to be detected without the need for interpolation [35].

 The algorithm used in research for this thesis utilizes a SSL data structure

allowing for a scalable solution to the encounter detection algorithm [30]. The SSL data

structure organizes the record set for comparing each record only with records having a

time difference of less than ΔT. Since the record set is chronologically ordered, only one

sweep is required when executing the algorithm.

For this research, an SSL was created using a cell array data structure in

MATLAB. A two-dimensional array was constructed with the first dimension defined as

the rows of the array and the second dimension defined as the columns of the array. The

column dimension was defined as the dimension for time with a resolution of one second

since the timestamp on the AIS data logs is reported to the nearest second. The row

dimension was defined to contain lists of one or more records for a given time. The data

structure was created by copying each record from the AIS log to the column

 29

corresponding to the timestamp for the record. Additional rows were added as needed to

the data structure to accommodate the number of records for each list.

Each cell of the array contains a Record object. The Record object was defined

using a class definition in MATLAB. Each Record object contains the Maritime Mobile

Service Identity (MMSI), latitude, longitude and time stamp for a vessel. The time stamp

is stored within the Record object as a day, month, year along with the hour, minute and

second. The format of the Record object is shown in Table 4.

Table 4. Record class data format.

Each column of the data structure consists of a list of records with the same time

value. Since the columns are in chronological sequence, it is only necessary to check

within lists between the current record and ΔT previous records [30].

The algorithm processes a record list in the SSL data structure format using the

following sequence of operations for each record:

1. Find the list in the SSL that contains the time for the current record.

2. Sweep over this list and previous ΔT lists and look for encounters between
MPOs.

3. Add to the encounter list any encounters between MPOs with different
IDs. [30]

To assess the complexity of this algorithm, the assumption is made that the

records in the record list are distributed uniformly over time [30]. Consistent with the

Field Function Class Bytes

MMSI ID int32 4

Long x position double 8

Lat y position double 8

month time int32 4

day time int32 4

year time int32 4

hour time int32 4

minute time int32 4

second time int32 4

 30

previous discussion on the algorithm, the assumption is that there is no need for

interpolation. The asymptotic time O for the complexity C of searching a list within the

SSL is defined as

 ((,))O C n S (6)

where n denotes the total number of records in a list within a SSL and ΔS is a specific

square size due to the spatial sensitivity. The asymptotic time O for complexity C of

searching the entire SSL is

 ((,))O NC n S (7)

where N is the number of lists to be searched in the SSL. The asymptotic time for

complexity of searching all records is

 ((,))O MNC n S (8)

where M is the total number of input records to be processed. This discussion shows that

the algorithm is scalable with the number of input records.

F. ENCOUNTER DETECTION VISUAL ANALYTICS PROCESS

The encounter detection visual analytics process is implemented using a

combination of non-commercial software and MATLAB code developed for this thesis.

The data flow for the encounter detection visual analytics process is shown in Figure 10.

The input AIS Data Log file is loaded into the AisDecoder software for data pre-

processing. The AisDecoder software decodes and filters the input Log file to create Comma-

separated value (CSV) output files for each of three AIS Message types. The CSV output files

generated by AisDecoder contain the position records for the geographic area specified by the

range filter.

Data processing begins when the CSV files are loaded into MATLAB using the

createLog function. The createLog function reads in each of the CSV files and creates a single

log object, which stores all of the position records. For each CSV file, the createLog function

reads the file one line at a time to retrieve the position records. For each position record, the

createLog function stores the MMSI identification field, the latitude and longitude fields, and

the time stamp as year, month, day, hour, minute and second fields in the log object.

 31

Figure 10. Encounter detection visual analytics process data flow.

AISDECODER
Software

DATA PROCESSING

\==J interpolateDat a
M ATLAB function

D
detectEncounter

MATLAB
functi on

D
c=) mergeEncounters

MATLAB function

AIS
FILTERED

MESSAGES

D
createl og

MATLAB
function

D

DATA PRE-PROCESSING

L---

V-Analytics

software

D
writeEncounter

MATLAB

function

D
DATA POST-PROCESSING

 32

The log object is provided to the interpolateData function, which performs linear

interpolation on the record set. The interpolateData function pre-interpolates the record

set in order to improve computational performance when processing large record sets and

to enable the use of a spatial windowing technique described in the next section.

Additional position records are added to the log object by the interpolateData function

when a gap in the record set is found that exceeds the temporal window. The

interpolateData function creates new position records by performing a linear

interpolation in position and time. The interpolateData function provides a

computationally efficient method by collecting all the records for a single ID and pre-

sorting the record set by time. The recursive structure of the original encounter detection

code as proposed in [30] is used to implement a recursive interpolation algorithm that

when using pre-sorted records allows the interpolation to be completed in a single pass of

the record set.

The detectEncounter function is called using the log object as input. The log

object contains a time-sorted and pre-interpolated record set. The detectEncounter

function creates the SSL using the input log object. For each list in the SSL and for each

record within each list, the detectEncounter detects encounters that occur between

records with different MMSI values. An encounter is detected by calculating the distance

between the two position records and comparing against the value of ΔS, the spatial

sensitivity. When the distance between the two positions is less than or equal to the

spatial sensitivity an elementary encounter has been detected. The elementary encounter

detections are then grouped into composite encounters based upon the MMSI values.

Each unique pair of MMSIs involved in an encounter creates a composite encounter.

The encounter list is generated as an output from the detectEncounter function.

The encounter list is a cell array data structure that contains all the encounter groups,

where each encounter group contains all the elementary encounters for a composite

encounter. Each element of a composite encounter contains, a pair of records, and the

calculation of the distance between the records.

The encounter list created by the detectEncounter function is provided as input to

the mergeEncounters function. The mergeEncounters function identifies duplicate

 33

encounters from each composite encounter and deletes them. Duplicate encounters are

removed from the encounter list when both records in an encounter pair have the same

time stamp. The mergeEncounters function also sorts the trajectory data and deletes

duplicate entries. The mergeEncounbters function creates trajectory data from the

encounter list so only positions that result in an encounter detection are output. For that

reason, the trajectory data may not be contiguous and may contain gaps in the case that

two vessels are moving in and out of an encounter over a period of time.

The final MATLAB function that is called is the writeEncounters function. The

writeEncounters function generates the configuration and input data files for use with the

V-Analytics software. The writeEncounters function creates CSV format files for

trajectory data that are loaded as tables into the V-Analytics software. The

writeEncounters function also creates the accompanying configuration file to import the

trajectory data files as map layers in the V-Analytics software. For each composite

encounter, the writeEncounters function generates two CSV output files. Each CSV

output file contains trajectory data for one vessel.

G. SLIDING SPATIAL WINDOW

During research for this thesis, it was observed that when the record set was

sparse in times, the original algorithm produced extremely long computation times. The

original algorithm combined encounter detection and interpolation in an integrated

recursive process. For this reason, the original algorithm was modified to perform

interpolation of the record set prior to encounter detection processing as suggested in

[30].

Unfortunately, even with pre-interpolated data, the expected run time for

processing a record set sparse in times is still extremely long. The expected run time was

based on an observed run time for processing a fraction of the entire record set and

extrapolating to estimate the expected run time. Even though, the sliding temporal

window reduced the total number of record checks when compared to a direct

comparison of every record, this approach still resulted in a very large number of

encounter checks for each record.

 34

To further reduce the number of encounter checks required of the algorithm, an

additional sliding spatial window approach was considered. Investigations into this

approach resulted in several prototype implementations using divide-and-conquer

approaches to the encounter detection problem. The divide-and-conquer approaches

follow the principles for dividing, conquering and combining as outlined in [36]. All

approaches rely on a reduction in the total number of encounter checks performed by

applying the sliding temporal window to only a subset of the total geographical space.

The differences between the approaches are the method of dividing the geographical

space and the methods to address the cases when records occur near one of the division

boundaries. All approaches are verified to ensure that the algorithm always produces a

correct solution and evaluated for improvement in efficiency for computation.

The first approach that was investigated consisted of dividing the record set into a

series of record sets based on the values for latitude and longitude. Each record was

assigned to be processed in a record set consisting of all the records within a one degree

of latitude by one degree of longitude square box. For the case where a record was near

the edges of the box, it was also included in the adjacent box for processing. A graphical

representation of this concept is shown in Figure 11.

The circle dots in Figure 11 represent the relative position of a record within the

one degree latitude by one degree longitude square box. Two examples are shown in

Figure 11. The circle in the upper right corner of the solid box is included in the record

set for the solid box it is contained in and, additionally, the adjacent boxes directly above,

directly to the right and the upper right diagonal. All three of these boxes are designated

using a dotted line border in the figure. The second example is the circle located in the

middle of the bottom of the solid box. In this example, the circle is included in the record

set for the solid box it is contained in and, additionally, the adjacent box directly below it.

This box is also shown using a dotted line border in the figure.

In order to reduce the memory required by MATLAB, the data object only

contains the current record set that is being processed. After each record set is processed,

the encounter list is extracted from the data object and saved in a separate data structure.

The encounter lists generated for each record set are combined during post-processing.

 35

Figure 11. Graphical representation of spatial window approach.

 A disadvantage of this approach is that for each square box the entire record set is

checked in order to build the current record subset for processing. This approach was

used to limit the amount of memory required when handling a record set with a large

number of sparse times. The generation of the record subsets for this approach can

require a significant amount of processing time, and for geographical areas where the

 36

maritime traffic is dense (i.e., near ports), the reduction of encounter checks may not

offset the additional processing required by the division and recombination process.

The boundary condition check was verified experimentally using a record set that

could be efficiently processed without the need for the sliding spatial window approach.

The boundary condition check was verified for each of the four configurations by

comparing the number of encounters detected by the unmodified algorithm with the

number of encounters detected by the algorithm modified to incorporate a spatial

window. A summary of these results are shown in Table 5.

Table 5. Parameters and boundary conditions by configuration.

As shown in Table 5 there is a direct relationship between the boundary value and

the spatial sensitivity. The value of the boundary used for the first configuration is only

one one-thousandth of a degree. It is important to keep the boundary value at the

minimum value required in order to detect all encounters because higher values for the

boundary results in additional duplicate encounters that need to be filtered out, and this

requires additional time for processing.

 A further extension of this concept was also investigated where the record set was

first divided into a series of record subsets based on the previously discussed one degree

of latitude by one degree of longitude square box and the accompanying boundary

conditions. In this prototype, this division is only performed once.

Another prototype proceeds to further divide each of the record subsets into a

smaller subset consisting of only the records in a smaller square box measuring a tenth of

Config N (seconds) ΔS (m) Boundary (degree)

1 60 185 0.001

2 60 370 0.002

3 30 185 0.001

4 30 370 0.002

 37

a degree of latitude by a tenth of a degree of longitude. This prototype further reduces the

processing required for the division process since the original record set is only divided

once. The number of total encounter checks is also reduced significantly based on this

further division of the geographical space. In comparison to the previous prototype, the

geographical area has been reduced by a factor of one hundred. Further improvement in

performance are realized for the cases where there are no records located within the

smaller square box since it is not necessary to perform any of the algorithm functions for

the case of no records.

Developing this prototype did require an additional level of complexity to

incorporate the boundary cases and to ensure that no potential encounter would be missed

due to the method of division used. The additional complexity was introduced due to the

boundary cases and the need to search more than one of the record subsets when

incorporating all the records needed for processing of each square box. Even though

additional duplicate records are likely when using this prototype, these duplicates can be

found and removed from the final results during post-processing.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

IV. IMPLEMENTATION AND RESULTS

The encounter detection algorithm and visual analytics process described in

Chapter III was applied to a historical archive of AIS data. The details of the

implementation of the algorithm and process are described in the first section, the

computational results are summarized in the second section, and the results from data

visualization techniques are presented in the third section.

A. IMPLEMENTATION

Selected data sets from a historical archive of AIS data were processed and

analyzed. The implementation details for pre-processing data, encounter detection and

post-processing data are described in this section.

1. Pre-processing Data

Data sets were pre-processed using AisDecoder software. Pre-processing is the

first step of a KD process and performed prior to data mining. The AisDecoder software

processes National Maritime Electronics Association (NMEA) and Automated

Information System (AIS) messages received serially over a network or using a Log File

[37]. The AisDecoder software decodes AIVDM/AIVDO sentences in the NMEA format

and the included time stamp. AIVDM sentences are reports from other ships, while

AIVDO sentences are reports from own ship [38]. An example AIVDM sentence is:

!AIVDM,1,1,,B,177KQJ5000G?tO`K>RA1wUbN0TKH,0*5C

where !AIVDM identifies the sentence type and the second and third fields indicate this

message is complete since this sentence has one fragment and this is the first and only

fragment [38]. Field four, which for this example is empty, is used for multi-sentence

messages, while field five designates the radio channel code. Field five and field six are

the data payload and number of fill bits required, while the *-separated suffix which, for

this example, is 5C is the data-integrity checksum for the sentence. The data payload

contains the AIS Messages that are decoded by AisDecoder to produce CSV output files.

 40

 The AisDecoder software decodes the message payloads and can also decode all

27 AIS Message types shown in Table 6.

Table 6. AIS message types, from [38].

Message 01 Position Report Class A

Message 02 Position Report Class A (Assigned schedule)

Message 03 Position Report Class A (Response to interrogation)

Message 04 Base Station Report

Message 05 Static and Voyage Related Data

Message 06 Binary Addressed Message

Message 07 Binary Acknowledge

Message 08 Binary Broadcast Message

Message 09 Standard SAR Aircraft Position Report

Message 10 UTC and Date Inquiry

Message 11 UTC and Date Response

Message 12 Addressed Safety Related Message

Message 13 Safety Related Acknowledgement

Message 14 Safety Related Broadcast Message

Message 15 Interrogation

Message 16 Assignment Mode Command

Message 17 DGNSS Binary Broadcast Message

Message 18 Standard Class B CS Position Report

Message 19 Extended Class B Equipment Position Report

Message 20 Data Link Management

Message 21 Aid-to-Navigation Report

Message 22 Channel Management

Message 23 Group Assignment Command

Message 24 Static Data Report

Message 25 Single Slot Binary Message,

Message 26 Multiple Slot Binary Message With Communications State

Message 27 Position Report For Long-Range Applications

 41

AisDecoder was used to decode input Log Files and create CSV output files for

AIS Message types 1, 2 and 3. AIS Message types 1, 2 and 3 are position reports and are

typically broadcast every 2 to 10 seconds while vessels are under way and every 3

minutes while the vessel is anchored [38]. Input filtering by AIS Message type was used

to generate a separate CSV output file for each message type.

Range filtering was also used to select a geographical region as specified by

latitude and longitude values. A geographic area within the Tri-Border Area (TBA) of

Southeast Asia, which includes Malaysia, Indonesia and the Philippines, was selected by

specifying the minimum and maximum values for longitude and latitude. A configuration

for AisDecoder was generated for each of the AIS Message types. The Options settings

for decoding and filtering type 1 messages are shown in Figure 12.

As can be seen in Figure 12, AisDecoder is configured to generate output files

containing records with longitude between 90 and 125 degrees and latitude between -10

and 8 degrees. This geographic region was chosen because it contains Singapore, which

is a busy port, while excluding the maritime areas outside of the TBA. Including a major

port such as Singapore in the maritime area under investigation required processing data

sets with a large number of position records.

2. Processing Data

Encounter detection processing was implemented in MATLAB using a script to

execute a main loop. The loop is executed once for each of four defined processing

configurations. The processing configurations are defined by the values for the spatial

(N) and temporal (ΔS) sensitivities as shown in Table 5 in the previous chapter. The

configSetup function is called at the start of each loop to configure N and ΔS. During the

first iteration of the loop, the createLog function is called which reads the input Log file

and creates the log object. On the first and third iterations of the loop, the interpolateData

function is called. The first time the interpolateData function is called is during the first

iteration of the loop, and the record set in the log object is interpolated using a value of

60 seconds for N. The second time the interpolateData function is called is during the

third iteration of the loop, and the record set in the log object is interpolated using a value

 42

of 30 seconds for N. This approach provides computational efficiency by reusing the log

object and only performing interpolation once for each value of N. The detectEncounter

function is called during each of the four iterations of the loop. The values for N and ΔS

are provided to the detectEncounter function as inputs. For each time through the loop, a

new data structure is created for encounter lists. Likewise, unique trajectory data is

created following calls to the mergeEncounters and writeEncounters functions.

Encounter detection and computational statistics are generated and reported in the

MATLAB status window at the end of the loop.

Figure 12. Aisdecoder settings window

The createLog function creates the initial log object during the first iteration of

the main loop. For each of the three AIS Message types, the createLog function calls the

initialize method of the Log class. The initialize method reads new records from the input

CSV file line by line using a while loop until the end of the file is reached. For each line

of the input CSV file, the initialize method extracts the date and time and stores the year,

month, day, hour, minute and second in the respective fields in a position record within

the log object. The initialize method additionally parses each line to record the MMSI,

 43

latitude and longitude into the MMSI, Lat and Long fields in the position record. The

initialize method reports the current configuration and elapsed time to the MATLAB

display window every time 1000 records have been read.

The interpolateData function creates additional position records using recursive

calls to the detect method of the AISData class. The interpolateData function processes a

record set by using a for loop. The beginning of the loop creates an sdata object using the

AISData class definition. The sdata object is used later during recursive calls to the detect

method. During the loop, we check each record against a list of MMSIs already

processed. If the MMSI has not already been processed, then a list containing all of the

records that match the MMSI is created. This list is then time sorted using an insertion

sort algorithm. The time-sorted list is used for another for loop that calls the detect

method once for each record in the list. The detect method creates new position records

when interpolation is required. At the beginning of the detect method, the current record

is added to the sdata object. The interpolateData function reports the current

configuration and elapsed time to the MATLAB display window every time 10,000

records have been read for interpolation.

The detect method searches forward and backward through the position records in

the sdata object to find other position records with the same MMSI. When a position

record is found searching backward, the found_prev_flag is set, and when a position

record is found searching forward, the found_next_flag is set. For the case of the

found_prev_flag being set, the time of the previous record is subtracted from the time of

the current record to determine the time difference. The calculated time difference is

compared with the value for N, and if the time difference is greater than N, a linear

interpolation is performed. A similar calculation for the time difference is used for the

case of the found_next_flag being set. Likewise, when the time difference is greater than

N, a linear interpolation is performed. In either case, the detect method is called

recursively using the new record as the input. The linear interpolation is performed by

calculating the midpoint between the two records in both time and space. For simplicity,

the midpoint in space is calculated simply by calculating the midpoint separately in both

latitude and longitude.

 44

The detectEncounter function detects encounters between position records with

different MMSIs. For the remainder of this section, the positions records are referred to

simply as records. The detectEncounter function uses a for loop to build the SSL from the

time sorted pre-interpolated data in the log object. The detectEncounter function also

uses a for loop to check for and remove duplicate records within the SSL. Encounter

detection is performed by the detectEncounter function using nested for loops to check

each record in the list for all of the lists in the SSL. Within the inner loop, the

detectEncounter function calls the edetect method of the AISData class.

The edetect method is called once for each of the records in the SSL. The edetect

method searches the lists within the SSL using a sliding time window. Since the SSL is

pre-interpolated and time sorted, the upper edge of the sliding window is simply set to the

time of the current record being checked. The lower edge of the sliding window is

calculated by subtracting the value for N from the time of the current record being

checked. In the case where a negative time would result, the lower edge of the sliding

window is set to the first record of the SSL. The edetect method uses nested for loops to

check the current record against all records in the current list and all other lists in the SSL

that are within the sliding time window. Within the inner loop, a comparison is made

between the MMSI of the current record and the record being checked. If the MMSI

values are different, the two records are checked for an encounter.

An encounter is detected when the distance between the two records is calculated

to be less than the value of ΔS. The distance between the records is calculated as the

distance between the two vessels using the distance function, which is a function

available in the MATLAB Mapping Toolbox. The distance function uses the latitude and

longitude values for each of the records as input. The distance function also requires the

meanradius to be input. The value of meanradius was set to the mean radius of the earth

with a value of 6371.009 kilometers.

If a previous encounter pair can be found in an existing composite encounter, then

the detectEncounter method adds the new encounter to an existing composite encounter.

The composite encounters are also simply referred to as encounter groups. If the

encounter pair cannot be found in an existing group, then a new encounter group is

 45

created. The detectEncounters method reports the current configuration and elapsed time

to the MATLAB display window every time 1000 records have been checked for

encounters.

The mergeEncounters function identifies and removes duplicate encounters from

the encounter lists generated by the detectEncounter function. The mergeEncounters

function uses nested for loops to check each encounter within each encounter group for

duplicates. Within the inner loop, the mergeEncounters function compares the MMSI,

Long, and Lat fields and the calculated time (from the hour, minute, and second fields)

between two records. If a match is found, the mergeEncounters function deletes the

duplicate record.

The mergeEncounters function also creates the trajectory data by removing

duplicate time entries from the encounter lists. Two nested for loops are used to find

duplicate entries in both the first and second lists created by the set of encounter pairs

within each encounter group. Recall that each encounter group consists of a list of

encounter pairs, where each pair in the group contains two lists of records with the first

list corresponding to the first vessel as determined by the MMSI and the second list

corresponding to the second vessel as determined by the MMSI. To create the trajectory

data, the mergeEncounters function identifies duplicates within each of the two MMSI

lists and removes them. The trajectory data no longer maintains the relationship of

encounter pairs but is a reduced data set where each list is a time ordered list of records

for when the encounter condition was met. The data reduction performed by the

mergeEncounters function reduces the number of records that require post-processing.

The mergeEncounters function reports to the MATLAB display window the number of

entries found and the number of entries deleted as each encounter group is processed.

3. Post-processing Data

The writeEncounters function is the final MATLAB function called by the main

loop. The writeEncounters function prepares the trajectory data for reading into the V-

Analytics software. The writeEncounters function creates the .app project description file

for loading a project into the V-Analytics software. The writeEncounters function also

 46

creates CSV output files using the trajectory data. Each CSV output file contains the

trajectory for one vessel. Each CSV output file is loaded into the V-Analytics software as

a layer on the map.

The V-Analytics software is a Visual Analytics System for Spatial and Temporal

Data developed for performing exploratory analysis of spatial and temporal data [39].

Once a project is loaded into V-Analytics, the map is zoomed in on the region that

contains encounters. An example data set is shown in Figure 13. A view of the same data

set after zooming out once is shown in Figure 14. In this example, all the detected

encounter activity is near the port of Singapore.

Figure 13. Default view of map showing encounters.

 47

Figure 14. Zoomed out view of map showing encounters.

B. COMPUTATIONAL RESULTS

Selected data sets from a historical archive of AIS data were processed and

analyzed. The computational results for pre-processing data and encounter detection are

described in this section.

1. Pre-processing Data

The AisDecoder software was used to geographically filter AIS messages stored

in Log Files. Archives of Log Files from February 2011 and January 2012 were used.

The numbers of messages extracted from each data set are shown in Figures 15 and 16.

As expected, the typical number of messages extracted from each data set increased from

2011 to 2013. In both the 2011 and 2012 data sets, at least one data set contained a very

large number of records. The 2013 data set contains no sets with a very large number of

records, and the overall distribution appears to be more even than the 2011 and 2012 data

sets.

 48

Figure 15. AIS messages processed for February 2011.

Figure 16. AIS messages processed for January 2012.

0

200000

400000

600000

800000

1000000

1200000

2
/1

2
/2

2
/3

2
/4

2
/5

2
/6

2
/7

2
/8

2
/9

2
/1

0
2

/1
1

2
/1

2
2

/1
4

2
/1

5
2

/1
6

2
/1

7
2

/1
8

2
/1

9
2

/2
0

2
/2

1
2

/2
2

2
/2

3
2

/2
4

2
/2

5
2

/2
6

2
/2

8

M
es

sa
ge

 C
o

u
n

t

Date Processed

AIS Type 1

AIS Type 2

AIS Type 3

0

200000

400000

600000

800000

1000000

1200000

1
/6

1
/7

1
/8

1
/9

1
/1

0

1
/1

1

1
/1

2

1
/1

3

1
/1

7

1
/1

8

1
/1

9

1
/2

0

1
/2

1

1
/2

2

1
/2

3

1
/2

4

1
/2

5

1
/2

6

1
/2

7

1
/3

0

1
/3

1

M
es

sa
ge

 C
o

u
n

t

Date Processed

AIS Type 1

AIS Type 2

AIS Type 3

 49

Figure 17. AIS messages processed for January 2013.

Figure 18. Interpolation processing for February 2011 for N = 60.

0

200000

400000

600000

800000

1000000

1200000

1
/1

1
/2

1
/3

1
/4

1
/5

1
/6

1
/7

1
/8

1
/9

1
/1

0
1

/1
5

1
/1

6
1

/1
7

1
/1

8
1

/1
9

1
/2

0
1

/2
1

1
/2

2
1

/2
3

1
/2

4
1

/2
5

1
/2

6
1

/2
7

1
/2

8
1

/2
9

1
/3

0
1

/3
1

M
es

sa
ge

 C
o

u
n

t

Date Processed

AIS Type 1

AIS Type 2

AIS Type 3

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

R
e

co
rd

 C
o

u
n

t

Date Processed

Number of Interpolated Values

Number of Position Records

 50

Figure 19. Interpolation processing for January 2012 for N = 60.

Figure 20. Interpolation processing for February 2011 for N = 30.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1
/9

1
/1

0

1
/1

1

1
/1

2

1
/1

8

1
/1

9

1
/2

0

1
/2

1

1
/2

2

1
/2

3

1
/2

4

1
/2

5

1
/2

6

1
/2

7

1
/3

1

R
e

co
rd

 C
o

u
n

t

Date Processed

Number of Interpolated Values

Number of Position Records

0

500000

1000000

1500000

2000000

2500000

R
e

co
rd

 C
o

u
n

t

Date Processed

Number of Interpolated Values

Number of Position Records

 51

Figure 21. Interpolation processing for January 2012 for N = 30.

2. Processing Data

Interpolation is performed on the data set prior to invoking the encounter

detection algorithm. Following the interpolation process, the original records and the

additional records created using interpolation are processed by the encounter detection

algorithm. The result of this process is summarized in Figures 18 and 19 for a value of

N = 60 and Figures 20 and 21 for a value of N = 30. The archive from 2011 contains

fewer records but requires more interpolation than the archive from 2012. The archive

from 2013 was not processed because the larger number of messages was unable to be

processed due to time constraints. Suggestions for further research are discussed in the

next chapter.

The encounter detection results are summarized in Figures 22 and 23. The number

of encounters generally increases for each successive configuration as defined for

Config 1 through Config 4. It is clear that the Config 1 definition of N = 60 seconds and

ΔS = 0.1 nm results in the least number of encounters for any data set. It is also clear that

the Config 4 definition of N = 30 seconds and ΔS = 0.2 nm results in the most number of

encounters for any data set.

0

500000

1000000

1500000

2000000

2500000

1
/9

1
/1

0

1
/1

1

1
/1

2

1
/1

8

1
/1

9

1
/2

0

1
/2

1

1
/2

2

1
/2

3

1
/2

4

1
/2

5

1
/2

6

1
/2

7

1
/3

1

R
e

co
rd

 C
o

u
n

t

Date Processed

Number of Interpolated Values

Number of Position Records

 52

It is an interesting result that when comparing results from Config 2 and Config 3

that either may detect more encounters than the other, and the result is dependent upon

the data set that is processed. Recall that Config 2 doubles the spatial sensitivity by

increasing ΔS to 0.2 nm, while Config 3 doubles the temporal sensitivity by decreasing

the temporal window from N = 60 seconds to N = 30 seconds. The encounter detection

results as shown in the figures show no clear ordering between Config 2 and Config 3.

An anomaly in the results can be seen when processing the very large February

15, 2011, February 16, 2011 and January 12, 2012 data sets. For these data sets the

number of encounters for Config 2 is clearly greater than the Config 3. These large data

sets are explored further in the next section on visualization results.

Figure 22. Encounter detection processing for February 2011.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

2
/1

2
/2

2
/3

2
/4

2
/5

2
/6

2
/7

2
/8

2
/9

2
/1

0
2

/1
1

2
/1

2
2

/1
4

2
/1

5
2

/1
6

2
/1

7
2

/1
8

2
/1

9
2

/2
0

2
/2

1
2

/2
2

2
/2

3
2

/2
4

2
/2

5
2

/2
6

En
co

u
n

er
 C

o
u

n
t

Date Processed

Config 1

Config 2

Config 3

Config 4

 53

Figure 23. Encounter detection processing for January 2012.

C. VISUALIZATION RESULTS

Data visualizations created from a historical AIS archive are described in this

section. A criteria for anomalous behavior is defined and the difference between

visualizations created using the same data set is compared when varying the

configuration parameters in Subsection 1. Examples of anomalous behavior that can be

observed in the visualizations are investigated and examples of the types of patterns that

can be observed are investigated in Subsection 2. The results presented here are

summarized in Subsection 3.

1. Analysis of Visualizations

Visualizations were generated using each of the four configuration settings for

each data set. Each visualization was reviewed to determine if any anomalous behavior

can be observed. Recall that earlier in this chapter, it was discussed that when a project is

loaded into the V-Analytics software, the map is automatically zoomed in on the region

that contains encounters. This feature is utilized to quickly determine for each

0

500000

1000000

1500000

2000000

2500000

1/9 1/10 1/11 1/12 1/18 1/19 1/20 1/21 1/22 1/23 1/24 1/25 1/26 1/27 1/31

En
co

u
n

er
 C

o
u

n
t

Date Processed

Config 1

Config 2

Config 3

Config 4

 54

visualization whether or not anomalous encounters can be observed. Anomalous behavior

can be seen when encounters are observed apart from expected locations.

Recall that, as discussed previously, a range filter was applied to the unprocessed

AIS data during pre-processing using the AisDecoder software. Within this geographic

area, the main area of activity is the maritime region near Singapore. For the case when

the map is zoomed into the maritime region near Singapore, no anomalous activity can be

seen. For the case when the map is zoomed out to include additional area, encounters are

seen within that may represent anomalous activity. Of particular interest are encounters

that occur in open sea areas away from typical sea routes. Visualizations for example

cases with no visible anomalous activity are shown in Figures 24 – 27.

When comparing Figure 24 and Figure 25, it can clearly be seen that there are

more encounters in Figure 25. With a closer look it can be seen that the zoom-in location

for Figure 25 is offset slightly to the north when compared with Figure 24. The reason for

this is seen in the top of both figures. The geographic area with encounters to the

northeast of the port is clearly larger in Figure 25 when compared with Figure 24. Recall

thatConfig 2 used spatial sensitivity twice that of Config 1. While both Config 1 and

Config 2 used the same temporal sensitivity, it can be seen that, as expected, the spatial

sensitivity has affected visualizations generated.

When comparing Figure 24 and Figure 26, we see that these figures share the

same zoom-in, and the locations of the encounters appear to be the same. Figure 26 was

created using Config 3, which has the same spatial sensitivity as Config 1 but uses a

value for temporal sensitivity that is one half that used for Config 1. The same similarity

is seen when comparing Figure 25 and Figure 27. These figures use the same spatial

sensitivity, and Figure 27 created using Config 4 has a temporal sensitivity that is one

half that used for Config 2.

 55

Figure 24. Visualization of encounters in Singapore maritime area (Config 1).

I

-.~-----------------

 56

Figure 25. Visualization of encounters in Singapore maritime area (Config 2).

..,.
0

~~
g

• • -" 0

 57

Figure 26. Visualization of encounters in Singapore maritime area (Config 3).

0

' 0 0

 58

Figure 27. Visualization of encounters in Singapore maritime area (Config 4).

0

~ 0 0

 59

All of the data sets from February 2011 were processed using each of the four

processing configurations and analyzed for anomalous behavior. No clear anomalous

behavior can be seen in these data sets; however, the previously mentioned very large

data sets did produce more interesting visualizations. Since it has already been

established that there is a negligible difference between the visualizations for Config 1

and Config 3 and between Config 2 and Config 4, only the visualizations for Config 1

and Config 2 are compared.

While it is possible that some of the isolated encounters may represent anomalous

activity, these findings are suspect due to the unusual size of the input data sets. In order

to characterize normal behavior and detect anomalous activity, the characteristics of the

data sets need to be similar to support patterns of life analysis and likewise for generating

methods to detect anomalies. Example visualizations from the very large data sets

discussed here are shown in the accompanying figures. Figure 28 and Figure 29 are

created from data sets from February 15, 2011. Figure 30 and Figure 31 are created using

data sets from February 16, 2011.

2. Anomaly Investigations

Examples of potential anomaly investigations using the AIS archive from January

2012 are provided in this subsection. Two data sets containing potentially anomalous

encounters are investigated here. The two data sets are from January 10, 2012 and

January 11, 2012. For the January 10, 2012 data set, two potential anomalous encounter

areas are identified north of the Singapore maritime area in the open sea. A closer look at

each of these encounter areas was performed by zooming into the area on the map.

The first encounter area indicates a parallel encounter pattern or a head front

pattern and is shown in Figure 32. Recall encounter patterns were previously defined in

Figure 9. Each vessel involved in the encounter is shown in the figure with a black box

around the trajectory points. The vessel on the left is shown in a purple color, while the

vessel on the right is shown in a red color. In this visualization the direction of movement

is not shown so the vessels may have been traveling in parallel for a short time or, more

likely, passed one another going opposite directions.

 60

Figure 28. Visualization of encounters February 15, 2011 (Config 1).

0

--

 61

Figure 29. Visualization of encounters February 15, 2011 (Config 2).

 62

Figure 30. Visualization of encounters February 16, 2011 (Config 1).

 63

Figure 31. Visualization of encounters February 16, 2011 (Config 2).

 64

Figure 32. Example of parallel or head front encounter pattern.

The second encounter area indicates a crossing pattern and is shown in Figure 33.

Once again each vessel involved in shown with a black box around the trajectory points.

The top vessel heading in a horizontal direction is shown in a purple color, while the

bottom vessel is heading in a vertical direction and is shown in a red color. Once again

the direction of movement is not shown, so it is possible these vessels were moving away

from one another; however, it is more likely that the top vessel is traveling either east or

west and the bottom vessel is approaching from the south and traveling north.

For the January 11, 2012 data set, an area can be observed that appears to involve

an interaction between four different vessels; however, the interaction between these

vessels is complicated and requires further investigation. The trajectories of the vessels

shown on the left and the vessel shown on the right may be the same vessel. The

trajectory formed by the vessel on the left and the trajectory formed by the vessel on the

right appear to form a single continuous trajectory. While there appears to be continuity

in the trajectory of the upper trajectories, there is no continuity between the trajectory

points shown in the lower left and the trajectory points shown on the right. This

apparently anomalous behavior is shown in Figure 34.

 65

Figure 33. Example of cross-encounter pattern.

Figure 34. Example of encounter pattern involving multiple vessels.

 66

3. Summary of Results

In this section, patterns on life and potential anomalous activities were

investigated using encounter visualizations. In the first subsection it was established that

the Config 2 processing values are sufficient for generating visualizations. Visualizations

generated using Config 1 were missing some of the encounter detections, while Config 3

and Config 4 did not generate any additional encounter areas to investigate.

In the second subsection, potential anomalous activities were investigated using

the encounter visualizations and zooming in on encounter areas of interest. Potential

encounter patterns were identified for several example cases. For these example cases,

initial observations were recording using the zoomed in encounter visualizations.

Additional approaches for anomaly investigation are suggested in the section on future

work in the final chapter.

 67

V. CONCLUSIONS

A visual analytics process to detect encounters between vessels from ship

positions was developed in this thesis. Research for this thesis supports the development

of ABI tradecraft in support of the USN MDA concept. Specifically, this research

demonstrated the use of an encounter detection algorithm for patterns of life analysis and

to help identify encounter areas to investigate potential anomalous activity.

Improvements to the original encounter detection algorithm to enable processing large

data sets were also investigated.

Large data sets from a historical AIS archive were first pre-processed in order to

decode position records from the original AIS message data. Pre-processing also

performed a geographic filter on the data in order to focus the inquiry on a specific

geographic area of interest. In this research, the focus was on the TBA of Southeast Asia

due to a history of piracy in this region.

Positions records were processed using an encounter detection algorithm

developed in MATLAB. The algorithm processed position record data using four

different configurations, where each configuration used different values for spatial and

temporal sensitivities. Two months of historical data for each configuration were

processed using both the original algorithm and a modified algorithm using a sliding

spatial window to improve performance when processing large data sets. Both algorithms

generated the same number of encounter detections, which demonstrated that both

algorithms are equivalent.

Data visualizations were also created using output files generated by the

encounter detection algorithm. Data visualizations were explored using the V-Analytics

software and the simple process of zooming in order to explore encounter areas of

interest.

A. SIGNIFICANT CONTRIBUTIONS

The most significant contribution from this research is the development of an

encounter detection algorithm for processing large data sets from a historical AIS

 68

archive. Previous research using the encounter detection algorithm used smaller data sets

and in many cases used simulated data. In this research, several key findings were

developed regarding the performance of the algorithm when processing large data sets.

The first finding was the growth in memory requirements for the original

algorithm when interpolation of data points was required. The original algorithm used a

recursive process to recursively call the detection function following the creation of new

position records from interpolation. Preliminary work was done in MATLAB using

standard procedural calls, and the recursive calls would cause MATLAB to exit

processing with an out-of-memory error. Although MATLAB does not support

programming with pointers, a pass-by-reference capability can be invoked using the

object oriented syntax in MATLAB. This change allowed the original algorithm to

complete but did not address the growth in processing time.

 The second finding was that the longer the algorithm was running, the slower the

encounter detection process became. This was also determined to be caused by the

interpolation process. The creation of new positions during the interpolation process was

creating an ever increasing number of positions to be checked by the encounter detection

function. A pre-interpolation process was introduced to eliminate the processing growth

associated with the integrated interpolation process. The addition of the pre-interpolation

process to the algorithm created predictable processing times that can be estimated as a

function of how many position records are being processed when the number of position

records used are the number of total records following interpolation.

The third finding was the modification of the algorithm to add the innovation of a

sliding spatial window to complement the sliding temporal window. Pre-interpolation of

the positions records allowed for the development of a method using a sliding spatial

window. Preliminary results show potential for processing performance improvement

with large and very large data sets.

A secondary contribution is the preliminary work done in pattern of life analysis

and identification of potentially anomalous behavior using historical AIS data. Most of

the data sets did not provide anything potentially of interest when viewing the

 69

visualization; however, in the January 2012 data set there were several days where the

visualizations did indicate multiple encounter areas to investigate. Since the algorithm did

not generate encounter areas of interest for each data set, it may be useful in building an

anomaly detection system. Assuming the algorithm continues to generate a limited

number of encounter areas of interest, a human analyst could very quickly investigate

these anomalies once cued by the encounter detection algorithm.

B. RECOMMENDATIONS FOR FUTURE WORK

In this thesis research the focus was on development of the encounter detection

algorithm in MATLAB and the investigation of possible performance improvements

when processing large data sets. AIS data from January 2013 consists of data sets that are

larger and generate significantly more position records than either the data processed

from February 2011 or January 2012. Future work could investigate processing and

analyzing additional data including larger data sets.

In addition to processing more data sets, additional work could be done in

exploratory data analysis. Additions to the visual analytics process could be made,

including the use of contextual data when investigating encounter areas. Contextual data

could be filtered in order to focus on or exclude vessels based on some characteristic

defined in the AIS messages. For example, vessels could be screened based on the flag

they operate under or the vessel type. The encounter detection algorithm could be

expanded to include automatic characterization of encounter patterns to aid in identifying

entities, activities and transactions.

Future work could also involve using the encounter detection algorithm with data

from another source. Radar position reports could be incorporated along with AIS reports

to provide a multi-INT approach to encounter detection.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

APPENDIX

The MATLAB code used to implement the encounter detection processing and

formatting for post-processing is provided in this appendix.

main.m

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

maxconfig = 4; % 4 different combinations of N (time) and delS (space)

% initialize stats
numRecords = 0;

memoryusage = zeros(1, maxconfig);
grandtotal = zeros(1, maxconfig);
numProcessed = zeros(1, maxconfig);
numEncounters = zeros(1, maxconfig);
numGroups = zeros(1, maxconfig);

% pre-interpolation processing

if(~(exist(‘data’, ‘dir’) == 7))

 disp(‘creating data directory...’)
 mkdir data

end

for config = 1 : maxconfig

 starttime(config) = tic; % record total time
 totalstart = uint64(starttime(config));
 disp([‘Processing Config #: ‘ num2str(config)])

 if(mod(config, 2) == 1) % clear data for new interpolation

 clear stat

 end

 clear data

 [N, delS] = configSetup(config); % retrieve sensitivity settings

 % intialize log file for storing position records
 if(exist(‘log’, ‘var’) == 1)

 % log file already in workspace - useful for debugging
 disp(‘Log file in workspace is being used.’)

 else

 log = createLog(config, totalstart); % create new log from AIS log data files;
 endoflog = log.recordlistend;

 end

 if(exist(‘stat’, ‘var’) == 1)

 72

 % stat file already in workspace - useful for debugging
 disp(‘Statistics found.. skipping interpolation.’)

 else

 stat = interpolateData(log, endoflog, N, config, totalstart); % interpolate
data before encounter detection
 numRecords = stat.recproc;

 end

 numProcessed(config) = stat.recproc + stat.totalpos;

 if(exist(‘data’, ‘var’) == 1)

 % stat file already in workspace - useful for debugging
 disp(‘Encounter data found.. skipping encounter detection. (Debug only)’)

 else

 [data, statenc] = detectEncounter(log, N, delS, config, totalstart);

 end

 sdata = mergeEncounters(data, config, totalstart);

 numEncounters(config) = sdata.totalencounters;
 numGroups(config) = sdata.groups;

 writeEncounters(sdata, config);

 [uv, sv] = memory;
 memoryusage(config) = round(uv.MemUsedMATLAB / 2^20); % in megabytes

 grandtotal(config) = round((toc(totalstart) / 3600), 2); % in hours
 disp([‘Number of records in record set: ‘ num2str(numRecords)])
 for gidx = 1 : maxconfig

 disp(‘--’)
 disp([‘CONFIGURATION #: ‘ num2str(gidx)])
 disp([‘Number of records processed for config #: ‘ num2str(numProcessed(gidx
))])
 disp([‘Number of encounters: ‘ num2str(numEncounters(gidx))])
 disp([‘Number of encounter groups: ‘ num2str(numGroups(gidx))])
 disp([‘Grand Total time in hours: ‘ num2str(grandtotal(gidx))])
 disp([‘MATLAB memory usage (MB): ‘ num2str(memoryusage(gidx))])
 disp(‘--’)

 end

 clear sdata

end

 73

configSetup.m

function [N, delS] = configSetup(config)

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

% configSetup returns the N (temporal) and delS (spatial) sensitivities

switch(config)

 case 1

 N = 60;
 delS = 185;

 case 2

 N = 60;
 delS = 185 * 2;

 case 3

 N = 30;
 delS = 185;

 case 4

 N = 30;
 delS = 185 *2;
end

end

createLog.m

function [log] = createLog(config, totalstart)

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

% createLog creates log object from AIS messages (1,2 and 3)

disp(‘Log file is being created in workspace.’)
 log = Log; % create object for AIS log data

 log.recordlist = cell(1, 100000);
 log.recordlistend = 0;

 logname = ‘outputm1.csv’;

 if(exist(logname, ‘file’) == 2)

 fid = fopen(logname); % open file
 disp(‘Reading type 1 messages’)
 log.initialize(fid, config, totalstart); % read file and create records in log
 fclose(fid);

 else

 disp(‘No type 1 messages found’)

 end

 74

 logname = ‘outputm2.csv’;

 if(exist(logname, ‘file’) == 2)

 fid = fopen(logname); % open file
 disp(‘Reading type 2 messages’)
 log.initialize(fid, config, totalstart); % read file and create records in log
 fclose(fid);

 else

 disp(‘No type 2 messages found’)

 end

 logname = ‘outputm3.csv’;

 if(exist(logname, ‘file’) == 2)

 fid = fopen(logname); % open file
 disp(‘Reading type 3 messages’)
 log.initialize(fid, config, totalstart); % read file and create records in log
 fclose(fid);

 else

 disp(‘No type 3 messages found’)

 end

end

@Log/Log.m

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

classdef Log < handle
 % Log class data structure

 properties
 recordlist
 recordlistend
 currentrecord
 minlat = -10;
 minlon = 90
 maxlat = 8;
 maxlon = 125;
 recordlimit = 1000;
 divideby = 10;
 preintrecordlist
 preintrecordlistend

 end

 methods

 function lsize = latsize(obj)
 lsize = 1 + (obj.maxlat - obj.minlat);
 end

 function lsize = lonsize(obj)
 lsize = 1 + (obj.maxlon - obj.minlon);
 end

 function offset = latoffset(obj)
 offset = -1 * (obj.minlat - 1);
 end

 75

 function offset = lonoffset(obj)
 offset = -1 * (obj.minlon -1);
 end

 function index = latidxstart(obj)
 index = obj.latoffset + obj.minlat;
 end

 function index = lonidxstart(obj)
 index = obj.lonoffset + obj.minlon;
 end

 function index = latidxend(obj)
 index = 1 + (obj.maxlat - obj.minlat);
 end

 function index = lonidxend(obj)
 index = 1 + (obj.maxlon - obj.minlon);
 end

 function index = latidx(obj, record)
 index = obj.latoffset + floor(record.Lat);
 end

 function index = lonidx(obj, record)
 index = obj.lonoffset + floor(record.Long);
 end

 function index = latdividx(obj, record)
 index = 1 + floor(10 * (abs(record.Lat) - fix(abs(record.Lat))));
 end

 function index = londividx(obj, record)
 index = 1 + floor(10 * (abs(record.Long) - fix(abs(record.Long))));
 end

 function index = latsubdividx(obj, record)
 index1 = 10 * (abs(record.Lat) - fix(abs(record.Lat)));
 index = 1 + floor(10 * (abs(index1) - fix(abs(index1))));
 end

 function index = lonsubdividx(obj, record)
 index1 = 10 * (abs(record.Long) - fix(abs(record.Long)));
 index = 1 + floor(10 * (abs(index1) - fix(abs(index1))));

 end

 function index = latsubdiv2(obj, record)
 index2 = 10 * (abs(record.Lat) - fix(abs(record.Lat)));
 index1 = 10 * (abs(index2) - fix(abs(index2)));
 index = 1 + floor(10 * (abs(index1) - fix(abs(index1))));
 end

 function index = lonsubdiv2(obj, record)
 index2 = 10 * (abs(record.Long) - fix(abs(record.Long)));
 index1 = 10 * (abs(index2) - fix(abs(index2)));
 index = 1 + floor(10 * (abs(index1) - fix(abs(index1))));

 end

 initialize(obj, fid, config, totalstart)

 [record, maxtime] = readpreintRecord(obj, splitlat, splitlon, splitlatidx,
splitlonidx, idx)
 end

 76

end

@Log/initialize.m

function [] = initialize(log, fid, config, totalstart)

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

% intialize is a method for the Log class

% additional fields in AIS message are commented out to reduce data
% structure size for interpolation and encounter detection

recordcount = 0;

while(~feof(fid))

 % Reads a new record from the input log file
 recordcount = recordcount + 1; % increment record count

 % get UTC field from record
 text = textscan(fid, ‘%s’, 1, ‘Delimiter’, ‘,’); % cell array

 % check for blank lines at end of file
 try

 UTC = text{ 1 }{ 1 }; % dereference cell array and string to char

 catch

 break; % if can’t read text assume at end of file

 end
 % extract date and time from UTC

 text = textscan(UTC, ‘%s’, 2);
 mdy = text{ 1 }{ 1 };
 hms = text{ 1 }{ 2 };

 text = textscan(mdy , ‘%d’, ‘Delimiter’, ‘/’);
 month = text{ 1 }(2); % imported using european date format
 day = text{ 1 }(1); % imported using european date format
 year = text{ 1 }(3);

 text = textscan(hms, ‘%d’, ‘Delimiter’, ‘:’);
 hour = text{ 1 }(1);
 minute = text{ 1 }(2);
 second = text{ 1 }(3);

 % get AIS message type

 text = textscan(fid, ‘%d’, 1, ‘Delimiter’, ‘,’);
 AISType = text{ 1 };

 switch (AISType)

 case{ 1, 2, 3 }

 % create new record (position record)
 record = Record;
 % record.AISType = AISType;

 % read MMSI unique identifier
 text = textscan(fid, ‘%d’, 1, ‘Delimiter’, ‘,’);
 record.MMSI = text{ 1 };

 77

 text = textscan(fid, ‘%d’, 1, ‘Delimiter’, ‘,’);
 % record.MMSIcode = text{ 1 };
 text = textscan(fid, ‘%s’, 1, ‘Delimiter’, ‘,’);
 % record.MMSIregion = text{ 1 };

 % read Navigation info
 text = textscan(fid, ‘%d’, 1, ‘Delimiter’ , ‘,’);
 % record.Navnum = text{ 1 };
% switch(record.Navnum)
% case(0)
% record.NavStatus = ‘Under way using engine’;
% case(1)
% record.NavStatus = ‘At anchor’;
% case(2)
% record.NavStatus = ‘Not under command’;
% case(3)
% record.NavStatus = ‘Restricted manueverability’;
% case(4)
% record.NavStatus = ‘Moored’;
% case(5)
% record.NavStatus = ‘Aground’;
% case(6)
% record.NavStatus = ‘Engaged in Fishing’;
% case(7)
% record.NavStatus = ‘Under way sailing’;
% case(8)
% record.NavStatus = ‘Under way using engine’;
% otherwise
% record.NavStatus = ‘Undefined’;
% end

 % read rate of turn
 text = textscan(fid, ‘%d’, 1, ‘Delimiter’, ‘,’);
 % record.ROT = text{ 1 };
% [a,b] = size(record.ROT);
%
% if (a > 1 || b > 1)
% disp(‘ size problem ‘)
% end
%
% if(record.ROT) == 0
% record.Turn = ‘Not turning’;
% elseif(record.ROT > 0 && record.ROT < 127)
% record.Turn = [‘Right at ‘ num2str((abs(record.ROT) / 4.733) ^2) ‘
deg/min’];
% elseif(record.ROT < 0 && record.ROT > -127)
% record.Turn = [‘Left at ‘ num2str((abs(record.ROT) / 4.733) ^2) ‘
deg/min’];
% elseif(record.ROT == 127)
% record.Turn = ‘Turning right at more than 708 deg/min’;
% elseif(record.ROT == -127)
% record.Turn = ‘Turning left at more than 708 deg/min’;
% else
% record.Turn = ‘No turn information available’;
% end

 % read speed over ground
 text = textscan(fid, ‘%f’, 1, ‘Delimiter’, ‘,’);
 % record.SOG = text{ 1 }; %knotts

 % position accuracy
 text = textscan(fid, ‘%d’, 1, ‘Delimiter’, ‘,’);
 % record.posacc = text{ 1 };

 % read longitude and lattitude
 text = textscan(fid, ‘%f’, 1, ‘Delimiter’, ‘,’);
 record.Long = text{ 1 };%minutes
 text = textscan(fid, ‘%f’, 1, ‘Delimiter’, ‘,’);
 record.Lat = text{ 1 };%degrees

 78

 % read course over ground
 text = textscan(fid, ‘%f’, 1, ‘Delimiter’, ‘,’);
 % record.COG = text{ 1 };% degrees - relative to true north

 % read true heading
 text = textscan(fid, ‘%d’, 1, ‘Delimiter’, ‘,’);
 % record.HDG = text{ 1 }; % degrees - true heading

 % read UTC second
 text = textscan(fid, ‘%d’, 1, ‘Delimiter’, ‘,’);
 % record.UTCs = text{ 1 };

 % read version
 text = textscan(fid, ‘%d’, 1, ‘Delimiter’, ‘,’);
 % record.ver = text{ 1 };

 % save UTC time stamp
 record.month = month;
 record.day = day;
 record.year = year;

 record.hour = hour;
 record.minute = minute;
 record.second = second;

 otherwise
 % ignore AIS message not 1,2 or 3 - find new line
 textscan(fid, ‘%*[^\n]’, 1, ‘Delimiter’, ‘,’);
 end

 log.recordlistend = log.recordlistend + 1;
 log.recordlist{ log.recordlistend } = record;

 if(recordcount == 1)

 disp(‘Reading records... please wait.’)

 elseif(mod(recordcount, 1000) == 0)

 totaltime = toc(totalstart);
 disp([‘Read ‘ num2str(recordcount) ‘ records. ‘])
 disp([‘Time elapsed in seconds for config #: ‘ num2str(config) ‘ = ‘ num2str(
totaltime)])
 end

end

@Record/Record.m

classdef Record
 % Record is a class for AIS records derived from AIS logs

 properties

 % AISType
 MMSI
 % MMSIcode
 % MMSIregion
 % Navnum
 % NavStatus
 % ROT
 % Turn
 % SOG
 % posacc
 Long
 Lat
 % COG

 79

 % HDG
 % UTCs % second
 % ver
 % time stammp
 month
 day
 year
 hour
 minute
 second

 end

 methods

 time = tsec(obj)

 end

end

@Record/tsec.m

function [time] = tsec(obj)
% calculate time in seconds with offset of +1 since no zero index
time = obj.hour * 3600 + obj.minute * 60 + obj.second + 1;

end

@interpolateData.m

function stat = interpolateData(log, endoflog, N, config, totalstart)

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

% interpolateData creates additional position records using recursive calls
% to an interpolation only detect function

% MMSI index and count
logMMSIidx = zeros(1, 10000);
logMMSIidxend = 0;
MMSIcount = zeros(1, 10000);
MMSIcountidx = 0;

% initialize statistics
stat.totalpos = 0;
stat.recproc = 0;

recordcount = 0; % intialize record counter

copyrecordlist = log.recordlist; % create copy of log for processing
copyrecordlistend = endoflog;
log.recordlistend = endoflog;

recordstoprocess = copyrecordlistend; % use end of log as index

if(recordstoprocess > 0) % skip processing if no records

 disp(‘**’)
 disp([‘RECORDS TO PROCESS = ‘ num2str(recordstoprocess)])

 % start interpolation algorithm
 for recidx = 1 : copyrecordlistend

 80

 [newRecord] = copyrecordlist{ recidx }; % read new record

 functioncall = 0; % number of calls to detect function
 recordcount = recordcount + 1;

 timesaved = zeros(1, 10000); % times of records so not duplicated when saving
interpolations
 timesavedidx = 0;

 sdata = AISData; % create new object for interpolating this MMSI
 sdata.N = N; % set temporal sensitivity

 first_time_flag = true; % allows for short loop when detect not called
 interpolate_log = true; % allows interpolation to be skipped for duplicate MMSIs

 recordssaved = 0; % number of new records saved due to interpolation

 for lidx = 1 : logMMSIidxend % for each MMSI already indexed

 if(interpolate_log == true) % MMSI index not found

 if(newRecord.MMSI == logMMSIidx(lidx)) % no need to interpolate

 interpolate_log = false; % skip processing
 break

 end

 else

 break % found MMSI index previously - no need to check

 end

 end

 if(interpolate_log == true) % skip when MMSI found in index

 MMSIrecords = cell(1, 10000); % records for a single MMSI
 MMSIrecordsend = 0;

 for cridx = 1 : copyrecordlistend % build record list for a single MMSI

 if(newRecord.MMSI == copyrecordlist{ cridx }.MMSI) % MMSI match

 MMSIrecordsend = MMSIrecordsend + 1;
 MMSIrecords{ MMSIrecordsend } = copyrecordlist{ cridx }; % copy
record to list

 end

 end

 for stidx = 2 : MMSIrecordsend % insertion sort algorithm adapted from Cormen
[p.18]

 keyvalue = MMSIrecords{ stidx }.tsec; % calls method to calculate time in
seconds
 keyrecord = MMSIrecords{ stidx };

 % insert key into the sorted sequence
 vidx = stidx - 1;

 while((vidx > 0) && (MMSIrecords{ vidx }.tsec > keyvalue))

 MMSIrecords{ vidx + 1 } = MMSIrecords{ vidx };
 vidx = vidx - 1;

 end

 81

 MMSIrecords{ vidx + 1 } = keyrecord;

 end % end insertion sort algorithm

 for ridx = 1 : MMSIrecordsend

 logtime = MMSIrecords{ ridx }.tsec;

 if(interpolate_log == false) % skip processing

 break

 end

 if(interpolate_log == true)

 timesavedidx = timesavedidx + 1;
 timesaved(timesavedidx) = logtime;

 sdata.detect(MMSIrecords{ ridx }); % call interpolation function
 functioncall = functioncall + 1;
 first_time_flag = false; % function has been called

 end

 end

 end

 if(first_time_flag == false)

 if(functioncall ~= sdata.totalfunctions) % new interpolations to process

 [row, col] = size(sdata.recordArray);

 recordssaved = 0;

 for tidx = 1 : col % for each new interpolation

 if(~isempty(sdata.recordArray{ tidx })) % not empty

 for sidx = 1 : timesavedidx % check each saved time

 if(tidx ~= timesaved(sidx)) % save only new records

 log.recordlistend = log.recordlistend + 1;
 log.recordlist{ log.recordlistend } = sdata.recordArray{
tidx };

 recordssaved = recordssaved + 1;

 break
 end

 end

 end

 end

 end

 else

 if(interpolate_log == false)

 else

 82

 sdata.totalfunctions = sdata.totalfunctions + 1;

 end

 end

 logMMSIidxend = logMMSIidxend + 1; % increment MMSI index
 logMMSIidx(logMMSIidxend) = newRecord.MMSI; % add to MMSI index

 MMSIcountidx = MMSIcountidx + 1; % increment count index
 MMSIcount(MMSIcountidx) = sdata.totalfunctions;
 stat.totalpos = stat.totalpos + recordssaved;
 clear sdata % clean up memory

 if(recidx == 1)

 disp(‘Interpolation in progress... please wait.’)

 elseif(mod(recidx, 1000) == 0)

 disp(‘--
’)
 disp([‘Record #: ‘ num2str(recidx) ‘ of ‘ num2str(recordstoprocess)])
 disp(‘--
’)

 totaltime = toc(totalstart);
 disp([‘Time elapsed in seconds for config #: ‘ num2str(config) ‘ = ‘
num2str(totaltime)])

 end

 end

 stat.recproc = stat.recproc + recordcount;

 disp(‘--’)
 disp([‘VESSELS = ‘ num2str(logMMSIidxend)])
 disp(‘--’)
 disp([‘TOTAL NEW POSITIONS = ‘ num2str(stat.totalpos)])
 disp([‘TOTAL RECORDS PROCESSED = ‘ num2str(stat.recproc)])
 disp([‘NEW TOTAL FOR LOG = ‘ num2str(stat.totalpos + stat.recproc)])

end

disp(‘cleaning up memory...’)
clear copylogrecordlist
clear copyrecordlist
clear copylogrecordlistend
clear copyrecordlistend

end

@AISData/AISData.m

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

classdef AISData < handle
 % AISData is top level class for encounter detection using AIS logs
 % inherits handle class to provide call by reference (pointer) behavior

 properties
 recordcount = 0; % number of records read from input file
 recordArray
 numEncounters
 % = zeros(1e2); % number of encounters per group
 numEncounterGroups = 0; % number of groups of encounters detected

 83

 totalNumEncounters = 0;
 totalfunctions = 0;
 N % number of intervals (seconds)
 delS % distance sensitivity in m (185 m = 0.1 nm)
 endofData
 % = zeros(1, 100000) % last entry in column
 % debug
 % = cell(1, 100000) % debug entry for each input record
 MMSIkey
 % = zeros(1, 100000) % key for MMSI lookup
 MMSIkeylast = 0;
 firsttime
 % = zeros(1, 100000) % keyed prevtime for MMSI
 lasttime
 % = zeros(1, 100000) % keyed nexttime for MMSI
 Latfilter = 6;
 Lonfilter = 93;
 % geofilter = true;
 % skippedrecords = 0;
 totaltime = 0;
 MMSIkeylookup
 encounterlist
 encounters = 0;
 encounterchecks = 0;
 totalencounters
 groups
 end

 methods

 [newrecord, maxtime] = readNewRecord(obj)
 initialize(obj, fid)
 detect(obj, newRecord)
 edetect(obj, newRecord)

 end

end

@AISData/detect.m

function [] = detect(data, newRecord)

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

% detect creates new data points when interpolation is required

% calculate time in seconds with offset of +1 since no zero index
timesec = newRecord.tsec; % time in seconds of current record

data.totalfunctions = data.totalfunctions + 1; % increment for function call

% save new record in data
if(data.MMSIkeylast == 0) % first record

 data.MMSIkeylast = 1;
 data.MMSIkey(data.MMSIkeylast) = newRecord.MMSI;
 data.endofData(timesec) = 1;
 data.recordArray{ 1 , timesec } = newRecord;
 data.firsttime(data.MMSIkeylast) = timesec;
 data.lasttime(data.MMSIkeylast) = timesec;

else % not first record
 for kidx = 1 : data.MMSIkeylast

 if(newRecord.MMSI == data.MMSIkey(kidx)) % found key

 84

 data.recordArray{ kidx, timesec } = newRecord;

 if((timesec - 1) < data.firsttime(kidx)) % check for new first time

 data.firsttime(kidx) = timesec;

 end

 if((timesec - 1) > data.lasttime(kidx)) % check for new last time

 data.lasttime(kidx) = timesec;

 end

 [~, col] = size(data.endofData);
 if(timesec > col) % update index for new record when exceed existing times

 data.endofData(timesec) = kidx;

 end

 break

 end

 if(kidx == data.MMSIkeylast) % new key needed because not found above

 data.MMSIkeylast = data.MMSIkeylast + 1;
 data.MMSIkey(data.MMSIkeylast) = newRecord.MMSI;
 data.recordArray{ data.MMSIkeylast , timesec } = newRecord;
 data.endofData(timesec) = data.MMSIkeylast;
 data.firsttime(data.MMSIkeylast) = timesec; % save first time
 data.lasttime(data.MMSIkeylast) = timesec;
 end
 end
end

% determine if interpolation needed.. searches for records with same MMSI

% initialize flags
found_prev_flag = false;
found_next_flag = false;

prevtime = timesec - 1; % check one entry before

% check MMSI key for previous time
firsttime = timesec; % assume first time is now

for kidx = 1 : data.MMSIkeylast % check for first time in MMSI index

 if(newRecord.MMSI == data.MMSIkey(kidx))

 if(data.firsttime > 0) % zero is unset value

 firsttime = data.firsttime(kidx);
 MMSIkeyidx = kidx;

 end

 break

 end

end

while(prevtime > firsttime) && (found_prev_flag == false) % previous record not found

 if(found_prev_flag == true) % stop looking when found

 85

 break

 end

 prevtime = prevtime - 1; % check below lower window for previous records

 [r, c] = size(data.recordArray{ MMSIkeyidx, prevtime });

 if ~((r == 0) && (c == 0)) % not empty

 found_prev_flag = true; % found a previous record match

 end

end

% check MMSI key for next time
nexttime = timesec; % assume next time is now

for kidx = 1 : data.MMSIkeylast % check for last time in MMSI index

 if(newRecord.MMSI == data.MMSIkey(kidx))

 lasttime = data.lasttime(kidx);
 MMSIkeyidx = kidx;
 break

 end

end

while(nexttime < lasttime) && (found_next_flag == false) % search outside upper
window

 if(found_next_flag == true)

 break

 end

 nexttime = nexttime + 1;

 [r, c] = size(data.recordArray{ MMSIkeyidx, nexttime });

 if ~((r == 0) && (c == 0)) % not empty

 found_next_flag = true; % found a next match

 end

end

if (found_prev_flag == true)

 timediff = double(timesec - prevtime); % double is fix for error in division

 if(timediff > data.N) % create interpolated previous point

 factor = 2;
 midpt = double(prevtime + fix(timediff ./ factor));
 lat1 = data.recordArray{ MMSIkeyidx, prevtime }.Lat;
 lat2 = newRecord.Lat;
 lon1 = data.recordArray{ MMSIkeyidx, prevtime }.Long;
 lon2 = newRecord.Long;
 newlat = (lat1 + lat2) ./ 2;
 newlon = (lon1 + lon2) ./ 2;

 % copy record into previous time

 86

 iPrev = newRecord;
 iPrev.Lat = round(newlat, 4);
 iPrev.Long = round(newlon, 4);

 % convert back to HMS
 iPrev.hour = fix((midpt / 3600));
 iPrev.minute = fix((mod(midpt / 60, 60)));
 iPrev.second = mod(midpt, 60) - 1; % remove +1 index

 if(iPrev.second == -1)

 iPrev.second = 59; % need to decrement minute and/or hour
 if(iPrev.minute == 0)

 iPrev.hour = iPrev.hour - 1; % decrement hour
 iPrev.minute = 59;
 else

 iPrev.minute = iPrev.minute - 1;

 end

 end

 % Recursive call for interpolation of previous record
 data.totalfunctions = data.totalfunctions + 1; % increment
 data.detect(iPrev);

 end

end

if(found_next_flag == true)

 timediff = double(nexttime - timesec);

 if(timediff > data.N) % create interpolated next point

 factor = 2;
 midpt = double(nexttime - fix(timediff ./ factor));
 lat1 = data.recordArray{ MMSIkeyidx, nexttime }.Lat;
 lat2 = newRecord.Lat;
 lon1 = data.recordArray{ MMSIkeyidx, nexttime }.Long;
 lon2 = newRecord.Long;
 newlat = (lat1 + lat2) ./ 2;
 newlon = (lon1 + lon2) ./ 2;

 % copy record into next time
 iNext = newRecord;
 iNext.Lat = round(newlat, 4);
 iNext.Long = round(newlon, 4);

 % convert back to HMS

 iNext.hour = fix((midpt / 3600));
 iNext.minute = fix((mod(midpt / 60, 60)));
 iNext.second = mod(midpt, 60) - 1; % remove +1 index

 if(iNext.second == -1)

 iNext.second = 59; % need to decrement minute and/or hour
 if(iNext.minute == 0)

 iNext.hour = iNext.hour - 1; % decrement hour
 iNext.minute = 59;
 else

 iNext.minute = iNext.minute - 1;

 87

 end

 end

 % Recursive call for interpolation of next record
 data.totalfunctions = data.totalfunctions + 1; % increment
 data.detect(iNext);

 end
end
end

@detectEncounter.m

function [sdata, stat] = detectEncounter(log, N, delS, config, totalstart)

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

% detectEncounter detects encounters between records with different MMSIs

disp(‘Time sorting interpolated data... please wait’)

sdata = AISData;
sdata.N = N;
sdata.delS = delS;
sdata.endofData = zeros(1, 86400);

stat.totalenc = 0;
stat.totalgrp = 0;
stat.recproc = 0;
endofTime = 0;

for tidx = 1 : log.recordlistend

 sdata.endofData(log.recordlist{ tidx }.tsec) = sdata.endofData(log.recordlist{
tidx }.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(log.recordlist{ tidx }.tsec), log.recordlist{
tidx }.tsec } = log.recordlist{ tidx };
 if(log.recordlist{ tidx }.tsec > endofTime)

 endofTime = log.recordlist{ tidx }.tsec;

 end

end

disp(‘Checking for duplicate records... please wait’)

for tidx = 1 : endofTime

 for ridx = 1 : sdata.endofData(tidx) % each time

 if(~isempty(sdata.recordArray{ ridx, tidx }))

 if(mod(ridx, 1000) == 0)

 disp([‘Checking record # : ‘ num2str(ridx)])

 end

 MMSI = sdata.recordArray{ ridx, tidx }.MMSI;
 Long = sdata.recordArray{ ridx, tidx }.Long;
 Lat = sdata.recordArray{ ridx, tidx }.Lat;
 time = sdata.recordArray{ ridx, tidx }.tsec;

 for didx = ridx + 1 : sdata.endofData(tidx) - 1;

 88

 if(~isempty(sdata.recordArray{ didx, tidx }))

 if((MMSI == sdata.recordArray{ didx, tidx }.MMSI) && ...
 (Long == sdata.recordArray{ didx, tidx }.Long) && ...
 (Lat == sdata.recordArray{ didx, tidx }.Lat) && ...
 (time == sdata.recordArray{ didx, tidx }.tsec)) %
duplicate found

 sdata.recordArray{ didx, tidx } = []; % delete record

 end

 end

 end

 end

 end

end

disp(‘Encounter detections in progress... please wait.’)

for tidx = 1 : endofTime % for each time

 for lidx = 1 : sdata.endofData(tidx) % for each item in list

 if(~isempty(sdata.recordArray{ lidx, tidx }))

 newRecord = sdata.recordArray{ lidx, tidx }; % read new record

 sdata.edetect(newRecord); % detect encounters for this record

 stat.totalenc = sdata.totalNumEncounters;
 stat.totalgrp = sdata.numEncounterGroups;
 stat.recproc = stat.recproc + 1;

 if(mod(stat.recproc, 1000) == 0)

 disp(‘--
----’)
 disp([‘Record #: ‘ num2str(stat.recproc) ‘ of ‘ num2str(
log.recordlistend)])
 disp(‘--
----’)
 disp(‘--’)
 disp([‘ENCOUNTERS = ‘ num2str(sdata.totalNumEncounters)])
 disp([‘GROUPS = ‘ num2str(sdata.numEncounterGroups)])
 disp(‘--’)
 disp([‘TOTAL ENCOUNTERS = ‘ num2str(stat.totalenc)])
 disp([‘TOTAL GROUPS = ‘ num2str(stat.totalgrp)])
 disp(‘--’)

 totaltime = toc(totalstart);
 disp([‘Time elapsed in seconds for config #: ‘ num2str(config) ‘ = ‘
num2str(totaltime)])

 end

 end

 end

end

disp(‘--’)
disp([‘ENCOUNTERS = ‘ num2str(sdata.totalNumEncounters)])

 89

disp([‘GROUPS = ‘ num2str(sdata.numEncounterGroups)])
disp(‘--’)
disp([‘TOTAL ENCOUNTERS = ‘ num2str(stat.totalenc)])
disp([‘TOTAL GROUPS = ‘ num2str(stat.totalgrp)])
disp(‘--’)

end

@AISData/edetect.m

function [] = edetect(data, newRecord)

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

% edetect detects encounters between records with different MMSIs

timesec = newRecord.tsec;
k = timesec;
midx = max(1, k - data.N); % lower edge of sliding window
nidx = k; % upper edge of sliding window

% search non-empty time sets

for listidx = midx: nidx

 numpositions = data.endofData(listidx);

 if(numpositions > 0)

 for posidx = 1 : numpositions

 [r, c] = size(data.recordArray{ posidx, listidx });
 if ~((r == 0) && (c == 0)) % not empty

 MMSIi = newRecord.MMSI;
 MMSIj = data.recordArray{ posidx, listidx }.MMSI;

 if (MMSIi ~= MMSIj) % not same vessel

 data.encounterchecks = data.encounterchecks + 1;

 lat1 = newRecord.Lat;
 lat2 = data.recordArray{ posidx, listidx }.Lat;
 lon1 = newRecord.Long;
 lon2 = data.recordArray{ posidx, listidx }.Long;

 meanradius = 6371.009 * 1e3; % mean radius of earth
 distv = distance(lat1, lon1, lat2, lon2, meanradius);

 if (distv <= data.delS) % detect encounters

 data.encounters = data.encounters + 1;

 if(data.numEncounterGroups == 0) % first encounter
 data.numEncounterGroups = 1;
 encgroup = 1; % set group
 encposition = 1; % set position within group

 else % not first encounter

 match_flag = 0; % initialize flag
 for encgroupidx = 1 : data.numEncounterGroups % search
existing encounters

 if((data.encounterlist{ encgroupidx, 1 ,1 }.MMSI ==
MMSIi || ...
 data.encounterlist{ encgroupidx, 1, 1 }.MMSI ==

 90

MMSIj))
 if((data.encounterlist{ encgroupidx, 1, 2 }.MMSI ==
MMSIi || ...
 data.encounterlist{ encgroupidx, 1, 2 }.MMSI
== MMSIj))

 % found match
 encgroup = encgroupidx;
 encposition = data.numEncounters(encgroup) + 1;
% set position to next in group
 match_flag = 1; % found match
 break; % stop searching

 end

 end

 end

 if(match_flag == 0) % no match

 encgroup = data.numEncounterGroups + 1;
 data.numEncounterGroups = encgroup;
 encposition = 1;

 end
 end

 % add to encounter list
 if(MMSIi < MMSIj)

 data.encounterlist{ encgroup, encposition, 1 } = newRecord;
 data.encounterlist{ encgroup, encposition, 2 } =
data.recordArray{ posidx, listidx };

 else

 data.encounterlist{ encgroup, encposition, 1 } =
data.recordArray{ posidx, listidx };
 data.encounterlist{ encgroup, encposition, 2 } = newRecord;

 end

 data.encounterlist{ encgroup, encposition, 3 } = distv;

 % update counts
 data.numEncounters(encgroup) = encposition;
 data.totalNumEncounters = data.totalNumEncounters + 1;

 end
 end
 end
 end
 end
end

mergeEncounters.m

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

% mergeEncounters identifies and removes duplicate encounters and groups

function [sdata] = mergeenc(sdata, config, totalstart)

 totalencountercount = 0;
 [row col z] = size(sdata.encounterlist);

 91

 for ridx = 1 : row % for each group

 disp([‘Searching for duplicate encounters in group #: ‘ num2str(ridx)])

 deleted = 0;

 for cidx = 1 : (col - 1)

 if(~isempty(sdata.encounterlist{ ridx, cidx, 1 }))

 MMSIi = sdata.encounterlist{ ridx, cidx, 1 }.MMSI;
 MMSIj = sdata.encounterlist{ ridx, cidx, 2 }.MMSI;
 Longi = sdata.encounterlist{ ridx, cidx, 1 }.Long;
 Longj = sdata.encounterlist{ ridx, cidx, 2 }.Long;
 Lati = sdata.encounterlist{ ridx, cidx, 1 }.Lat;
 Latj = sdata.encounterlist{ ridx, cidx, 2 }.Lat;
 timei = sdata.encounterlist{ ridx, cidx, 1 }.tsec;
 timej = sdata.encounterlist{ ridx, cidx, 2 }.tsec;

 for didx = (cidx + 1) : col

 if(~isempty(sdata.encounterlist{ ridx, didx, 1 }))

 if((((MMSIi == sdata.encounterlist{ ridx, didx, 1 }.MMSI) &&
...
 (Longi == sdata.encounterlist{ ridx, didx, 1 }.Long) &&
...
 (Lati == sdata.encounterlist{ ridx, didx, 1 }.Lat) &&
...
 (timei == sdata.encounterlist{ ridx, didx, 1 }.tsec))
&& ...
 ((MMSIj == sdata.encounterlist{ ridx, didx, 2 }.MMSI)
&& ...
 (Longj == sdata.encounterlist{ ridx, didx, 2 }.Long) &&
...
 (Latj == sdata.encounterlist{ ridx, didx, 2 }.Lat) &&
...
 (timej == sdata.encounterlist{ ridx, didx, 2 }.tsec))
) || ...
 (((MMSIi == sdata.encounterlist{ ridx, didx, 2 }.MMSI
) && ...
 (Longi == sdata.encounterlist{ ridx, didx, 2 }.Long) &&
...
 (Lati == sdata.encounterlist{ ridx, didx, 2 }.Lat) &&
...
 (timei == sdata.encounterlist{ ridx, didx, 2 }.tsec))
&& ...
 ((MMSIj == sdata.encounterlist{ ridx, didx, 1 }.MMSI)
&& ...
 (Longj == sdata.encounterlist{ ridx, didx, 1 }.Long) &&
...
 (Latj == sdata.encounterlist{ ridx, didx, 1 }.Lat) &&
...
 (timej == sdata.encounterlist{ ridx, didx, 1 }.tsec))
)) % duplicate found

 % disp(‘Duplicate found. Deleted.’)
 sdata.encounterlist{ ridx, didx, 1 } = []; % delete encounter
 sdata.encounterlist{ ridx, didx, 2 } = [];
 sdata.encounterlist{ ridx, didx, 3 } = 0;
 deleted = deleted + 1;

 end

 end

 end

 92

 end

 end

 encountercount = 0;

 disp(‘counting encounters...’)
 for idxcnt = 1 : col

 if(~isempty(sdata.encounterlist{ ridx, idxcnt, 1 }))

 encountercount = encountercount + 1;

 end

 end

 disp([‘Encounters found in group #: ‘ num2str(ridx) ‘ of ‘ num2str(row) ‘:
‘ num2str(encountercount)])
 disp([‘Encounters deleted: ‘ num2str(deleted)])
 totalencountercount = totalencountercount + encountercount;

 disp([‘Searching for duplicate entries in group #: ‘ num2str(ridx)])

 deleted = 0;

 for cidx = 1 : (col - 1)

 if(~isempty(sdata.encounterlist{ ridx, cidx, 1 }))

 MMSI = sdata.encounterlist{ ridx, cidx, 1 }.MMSI;
 Long = sdata.encounterlist{ ridx, cidx, 1 }.Long;
 Lat = sdata.encounterlist{ ridx, cidx, 1 }.Lat;
 time = sdata.encounterlist{ ridx, cidx, 1 }.tsec;

 for didx = (cidx + 1) : col

 if(~isempty(sdata.encounterlist{ ridx, didx, 1 }))

 if((MMSI == sdata.encounterlist{ ridx, didx, 1 }.MMSI) && ...
 (Long == sdata.encounterlist{ ridx, didx, 1 }.Long) &&
...
 (Lat == sdata.encounterlist{ ridx, didx, 1 }.Lat) &&
...
 (time == sdata.encounterlist{ ridx, didx, 1 }.tsec)) %
duplicate found

 % disp(‘Duplicate found. Deleted.’)
 sdata.encounterlist{ ridx, didx, 1 } = []; % delete encounter
 sdata.encounterlist{ ridx, didx, 3 } = 0;
 deleted = deleted + 1;

 end

 end

 end

 end

 end

 disp([‘Entries deleted: ‘ num2str(deleted)])

 deleted = 0;

 for cidx = 1 : (col - 1)

 if(~isempty(sdata.encounterlist{ ridx, cidx, 2 }))

 93

 MMSI = sdata.encounterlist{ ridx, cidx, 2 }.MMSI;
 Long = sdata.encounterlist{ ridx, cidx, 2 }.Long;
 Lat = sdata.encounterlist{ ridx, cidx, 2 }.Lat;
 time = sdata.encounterlist{ ridx, cidx, 2 }.tsec;

 for didx = (cidx + 1) : col

 if(~isempty(sdata.encounterlist{ ridx, didx, 2 }))

 if((MMSI == sdata.encounterlist{ ridx, didx, 2 }.MMSI) && ...
 (Long == sdata.encounterlist{ ridx, didx, 2 }.Long) &&
...
 (Lat == sdata.encounterlist{ ridx, didx, 2 }.Lat) &&
...
 (time == sdata.encounterlist{ ridx, didx, 2 }.tsec)) %
duplicate found

 % disp(‘Duplicate found. Deleted.’)
 sdata.encounterlist{ ridx, didx, 2 } = []; % delete encounter
 sdata.encounterlist{ ridx, didx, 3 } = 0;
 deleted = deleted + 1;

 end

 end

 end

 end

 end

 disp([‘Entries deleted: ‘ num2str(deleted)])
 totaltime = toc(totalstart);
 disp([‘Time elapsed in seconds for config #: ‘ num2str(config) ‘ = ‘ num2str(
totaltime)])

 end
 disp([‘Total Encounters found: ‘ num2str(totalencountercount)])
 sdata.totalencounters = totalencountercount;
 sdata.groups = row;
end

writeEncounters.m

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

function [] = writeEncounters(data, config)
% Write encounter detections to file

disp(‘Please wait...writing encounter files to disk.’)

fileroot = getFileDate(config);

cd data

fname3 = [fileroot ‘.app’];

APPL_NAME = [‘APPL_NAME “‘ fileroot ‘“ ‘];

bcolor1 = repmat([239 6 101;
 246 42 238;
 45 232 42;
 249 6 123], 1000, 1);

 94

bcolor2 = repmat([214 218 22;
 23 212 66;
 44 82 247;
 242 25 8], 1000, 1);

bground1 = repmat([105 62 107;
 133 107 110;
 90 18 44;
 4 90 50], 1000, 1);

bground2 = repmat([106 70 19;
 58 61 0;
 36 123 13;
 86 61 95], 1000, 1);

[d1, d2, d3] = size(data.encounterlist); % find out size of matrix

fidw3 = fopen(fname3, ‘wt’);

fprintf(fidw3, ‘%s\n’, APPL_NAME);

TERR_NAME = ‘TERR_NAME “TBA” ‘;

fprintf(fidw3, ‘%s\n’, TERR_NAME);

USER_UNIT = ‘USER_UNIT “degree”‘;

fprintf(fidw3, ‘%s\n’, USER_UNIT);

HAS_GEO_COORD = ‘HAS_GEO_COORD +’;

fprintf(fidw3, ‘%s\n’, HAS_GEO_COORD);

SHOW_LEGEND = ‘SHOW_LEGEND +’;

fprintf(fidw3, ‘%s\n’, SHOW_LEGEND);

SHOW_LEGEND_SIZE = ‘SHOW_LEGEND_SIZE 30’;

fprintf(fidw3, ‘%s\n’, SHOW_LEGEND_SIZE);

SHOW_LEGEND_TERRNAME = ‘SHOW_LEGEND_TERRNAME +’;

fprintf(fidw3, ‘%s\n’, SHOW_LEGEND_TERRNAME);

SHOW_LEGEND_BGCOLOR = ‘SHOW_LEGEND_BGCOLOR +’;

fprintf(fidw3, ‘%s\n’, SHOW_LEGEND_BGCOLOR);

SHOW_LEGEND_NOBJECTS = ‘SHOW_LEGEND_NOBJECTS +’;

fprintf(fidw3, ‘%s\n’, SHOW_LEGEND_NOBJECTS);

SHOW_RECORD_PERSISTENT = ‘SHOW_RECORD_PERSISTENT -’;

fprintf(fidw3, ‘%s\n’, SHOW_RECORD_PERSISTENT);

SHOW_RECORD_TOOLTIP = ‘SHOW_RECORD_TOOLTIP +’;

fprintf(fidw3, ‘%s\n’, SHOW_RECORD_TOOLTIP);

SHOW_MANIPULATOR = ‘SHOW_MANIPULATOR +’;

fprintf(fidw3, ‘%s\n’, SHOW_MANIPULATOR);

SHOW_MANIPULATOR_SIZE = ‘SHOW_MANIPULATOR_SIZE +’;

fprintf(fidw3, ‘%s\n’, SHOW_MANIPULATOR_SIZE);

 95

APPL_BGCOLOR = ‘APPL_BGCOLOR (192,192,192)’;

fprintf(fidw3, ‘%s\n’, APPL_BGCOLOR);

for idxd1 = 1 : d1

 idxd2 = 1;

 enc1 = data.encounterlist{ idxd1, idxd2, 1 };
 enc2 = data.encounterlist{ idxd1, idxd2, 2 };

 if(isempty(enc1))

 break

 end

 MMSI1 = enc1.MMSI;
 MMSI2 = enc2.MMSI;

 fname1 = [fileroot ‘_enc’ num2str(idxd1) ‘-1_’ num2str(MMSI1) ‘.csv’];
 fname2 = [fileroot ‘_enc’ num2str(idxd1) ‘-2_’ num2str(MMSI2) ‘.csv’];

 TABLEDATA = [‘TABLEDATA “‘ fname1 ‘“ “‘ fname1 ‘“‘];

 fprintf(fidw3, ‘%s\n’, TABLEDATA);

 FORMAT = ‘FORMAT “CSV”‘;

 fprintf(fidw3, ‘%s\n’, FORMAT);

 DELIMITER = ‘DELIMITER ,”“‘;

 fprintf(fidw3, ‘%s\n’, DELIMITER);

 FIELD_NAMES_IN_ROW = ‘FIELD_NAMES_IN_ROW 1’;

 fprintf(fidw3, ‘%s\n’, FIELD_NAMES_IN_ROW);

 ID_FIELD = ‘ID_FIELD “encID”‘;

 fprintf(fidw3, ‘%s\n’, ID_FIELD);

 NAME_FIELD = ‘NAME_FIELD 1’;

 fprintf(fidw3, ‘%s\n’, NAME_FIELD);

 X_FIELD = ‘X_FIELD “X”‘;

 fprintf(fidw3, ‘%s\n’, X_FIELD);

 Y_FIELD = ‘Y_FIELD “Y”‘;

 fprintf(fidw3, ‘%s\n’, Y_FIELD);

 zTimeReference = ‘<TimeReference>‘;

 fprintf(fidw3, ‘%s\n’, zTimeReference);

 meaning = ‘meaning=“OCCURRED_AT”‘;

 fprintf(fidw3, ‘%s\n’, meaning);

 zTime = ‘“timeMMDDYYYY”=“mm/dd/yyyy hh:tt:ss”‘;

 fprintf(fidw3, ‘%s\n’, zTime);

 attr_name = ‘“timeMMDDYYYY”‘;

 96

 fprintf(fidw3, ‘%s\n’, attr_name);

 keep_original_columns = ‘keep_original_columns=no’;

 fprintf(fidw3, ‘%s\n’, keep_original_columns);

 z_TimeReference = ‘</TimeReference>‘;

 fprintf(fidw3, ‘%s\n’, z_TimeReference);

 zTYPE = ‘TYPE POINT’;

 fprintf(fidw3, ‘%s\n’, zTYPE);

 BUILD_MAP_LAYER = ‘BUILD_MAP_LAYER +’;

 fprintf(fidw3, ‘%s\n’, BUILD_MAP_LAYER);

 DRAWING = ‘DRAWING +’;

 fprintf(fidw3, ‘%s\n’, DRAWING);

 ALLOW_SPATIAL_FILTER = ‘ALLOW_SPATIAL_FILTER +’;

 fprintf(fidw3, ‘%s\n’, ALLOW_SPATIAL_FILTER);

 TRANSPARENCY = ‘TRANSPARENCY 0’;

 fprintf(fidw3, ‘%s\n’, TRANSPARENCY);

 BORDERS = ‘BORDERS +’;

 fprintf(fidw3, ‘%s\n’, BORDERS);

 BORDERW = ‘BORDERW 1’;

 fprintf(fidw3, ‘%s\n’, BORDERW);

 HLIGHTEDW = ‘HLIGHTEDW 3’;

 fprintf(fidw3, ‘%s\n’, HLIGHTEDW);

 SELECTEDW = ‘SELECTEDW 3’;

 fprintf(fidw3, ‘%s\n’, SELECTEDW);

 BORDERCOLOR = [‘BORDERCOLOR (‘ num2str(bcolor1(mod(idxd1, 4000) + 1, 1)) ...
 ‘,’ num2str(bcolor1(mod(idxd1, 4000) + 1, 2)) ...
 ‘,’ num2str(bcolor1(mod(idxd1, 4000) + 1, 3)) ‘)’];

 fprintf(fidw3, ‘%s\n’, BORDERCOLOR);

 BACKGROUND = [‘BACKGROUND (‘ num2str(bground1(mod(idxd1, 4000) + 1, 1)) ...
 ‘,’ num2str(bground1(mod(idxd1, 4000) + 1, 2)) ...
 ‘,’ num2str(bground1(mod(idxd1, 4000) + 1, 3)) ‘)’];

 fprintf(fidw3, ‘%s\n’, BACKGROUND);

 HATCH_STYLE = ‘HATCH_STYLE 0’;

 fprintf(fidw3, ‘%s\n’, HATCH_STYLE);

 % Repeat for second in pair

 TABLEDATA = [‘TABLEDATA “‘ fname2 ‘“ “‘ fname2 ‘“‘];

 fprintf(fidw3, ‘%s\n’, TABLEDATA);

 DELIMITER = ‘DELIMITER ,”“‘;

 97

 fprintf(fidw3, ‘%s\n’, DELIMITER);

 FIELD_NAMES_IN_ROW = ‘FIELD_NAMES_IN_ROW 1’;

 fprintf(fidw3, ‘%s\n’, FIELD_NAMES_IN_ROW);

 ID_FIELD = ‘ID_FIELD “encID”‘;

 fprintf(fidw3, ‘%s\n’, ID_FIELD);

 NAME_FIELD = ‘NAME_FIELD 1’;

 fprintf(fidw3, ‘%s\n’, NAME_FIELD);

 X_FIELD = ‘X_FIELD “X”‘;

 fprintf(fidw3, ‘%s\n’, X_FIELD);

 Y_FIELD = ‘Y_FIELD “Y”‘;

 fprintf(fidw3, ‘%s\n’, Y_FIELD);

 zTimeReference = ‘<TimeReference>‘;

 fprintf(fidw3, ‘%s\n’, zTimeReference);

 meaning = ‘meaning=“OCCURRED_AT”‘;

 fprintf(fidw3, ‘%s\n’, meaning);

 zTime = ‘“timeMMDDYYYY”=“mm/dd/yyyy hh:tt:ss”‘;

 fprintf(fidw3, ‘%s\n’, zTime);

 attr_name = ‘“timeMMDDYYYY”‘;

 fprintf(fidw3, ‘%s\n’, attr_name);

 keep_original_columns = ‘keep_original_columns=no’;

 fprintf(fidw3, ‘%s\n’, keep_original_columns);

 z_TimeReference = ‘</TimeReference>‘;

 fprintf(fidw3, ‘%s\n’, z_TimeReference);

 zTYPE = ‘TYPE POINT’;

 fprintf(fidw3, ‘%s\n’, zTYPE);

 BUILD_MAP_LAYER = ‘BUILD_MAP_LAYER +’;

 fprintf(fidw3, ‘%s\n’, BUILD_MAP_LAYER);

 DRAWING = ‘DRAWING +’;

 fprintf(fidw3, ‘%s\n’, DRAWING);

 ALLOW_SPATIAL_FILTER = ‘ALLOW_SPATIAL_FILTER +’;

 fprintf(fidw3, ‘%s\n’, ALLOW_SPATIAL_FILTER);

 TRANSPARENCY = ‘TRANSPARENCY 0’;

 fprintf(fidw3, ‘%s\n’, TRANSPARENCY);

 BORDERS = ‘BORDERS +’;

 98

 fprintf(fidw3, ‘%s\n’, BORDERS);

 BORDERW = ‘BORDERW 1’;

 fprintf(fidw3, ‘%s\n’, BORDERW);

 HLIGHTEDW = ‘HLIGHTEDW 3’;

 fprintf(fidw3, ‘%s\n’, HLIGHTEDW);

 SELECTEDW = ‘SELECTEDW 3’;

 fprintf(fidw3, ‘%s\n’, SELECTEDW);

 fprintf(fidw3, ‘%s\n’, BORDERCOLOR);

 fprintf(fidw3, ‘%s\n’, BACKGROUND);

 HATCH_STYLE = ‘HATCH_STYLE 0’;

 fprintf(fidw3, ‘%s\n’, HATCH_STYLE);

 fidw1 = fopen(fname1, ‘wt’);
 fidw2 = fopen(fname2, ‘wt’);

 enc1 = data.encounterlist{ idxd1, idxd2, 1 };
 enc2 = data.encounterlist{ idxd1, idxd2, 2 };

 MMSI1 = enc1.MMSI;
 MMSI2 = enc2.MMSI;

 enc1ID = [num2str(MMSI1) ‘_’ num2str(idxd1)];
 enc2ID = [num2str(MMSI2) ‘_’ num2str(idxd1)];

 outarray = ‘encID,encN,pldx,X,Y,timeMMDDYYYY’;
 fprintf(fidw1, ‘%s\n’, outarray);

 outarray = ‘encID,encN,pldx,X,Y,timeMMDDYYYY’;
 fprintf(fidw2, ‘%s\n’, outarray);

 while(idxd2 <= d2)

 enc1 = data.encounterlist{ idxd1, idxd2, 1 };

 if(~isempty(enc1))

 if(enc1.month < 10)
 monthstr1 = [‘0’ num2str(enc1.month)];
 else
 monthstr1 = num2str(enc1.month);
 end

 if(enc1.day < 10)
 daystr1 = [‘0’ num2str(enc1.day)];
 else
 daystr1 = num2str(enc1.day);
 end

 if(enc1.hour < 10)
 hourstr1 = [‘0’ num2str(enc1.hour)];
 else
 hourstr1 = num2str(enc1.hour);
 end

 if(enc1.minute < 10)
 minutestr1 = [‘0’ num2str(enc1.minute)];
 else
 minutestr1 = num2str(enc1.minute);
 end

 99

 if(enc1.second < 10)
 secondstr1 = [‘0’ num2str(enc1.second)];
 else
 secondstr1 = num2str(enc1.second);
 end

 outarray = [num2str(enc1ID) ‘,’ num2str(1) ‘,’ num2str(idxd2) ‘,’ ...
 num2str(enc1.Long) ‘,’ num2str(enc1.Lat) ‘,’ ...
 monthstr1 ‘/’ daystr1 ‘/’ num2str(enc1.year) ...
 ‘ ‘ hourstr1 ‘:’ minutestr1 ‘:’ secondstr1];

 fprintf(fidw1, ‘%s\n’, outarray);

 end

 enc2 = data.encounterlist{ idxd1, idxd2, 2 };

 if(~isempty(enc2))

 if(enc2.month < 10)
 monthstr2 = [‘0’ num2str(enc2.month)];
 else
 monthstr2 = num2str(enc2.month);
 end

 if(enc2.month < 10)
 daystr2 = [‘0’ num2str(enc2.day)];
 else
 daystr2 = num2str(enc2.day);
 end

 if(enc2.hour < 10)
 hourstr2 = [‘0’ num2str(enc2.hour)];
 else
 hourstr2 = num2str(enc2.hour);
 end

 if(enc2.minute < 10)
 minutestr2 = [‘0’ num2str(enc2.minute)];
 else
 minutestr2 = num2str(enc2.minute);
 end

 if(enc2.second < 10)
 secondstr2 = [‘0’ num2str(enc2.second)];
 else
 secondstr2 = num2str(enc2.second);
 end

 outarray = [num2str(enc2ID) ‘,’ num2str(2) ‘,’ num2str(idxd2) ‘,’ ...
 num2str(enc2.Long) ‘,’ num2str(enc2.Lat) ‘,’ ...
 monthstr2 ‘/’ daystr2 ‘/’ num2str(enc2.year) ...
 ‘ ‘ hourstr2 ‘:’ minutestr2 ‘:’ secondstr2];

 fprintf(fidw2, ‘%s\n’, outarray);

 end

 idxd2 = idxd2 + 1;

 end

 fclose(fidw1);
 fclose(fidw2);

end

 100

fclose(fidw3);

cd ..

end

getFileDate.m

function [fileroot] = getFileDate(config)

% open log file to obtain date of AIS data
fidinit = fopen(‘outputm1.csv’); % open file

% read current record (line) to obtain UTC date for log file

 % get UTC field from record
 text = textscan(fidinit, ‘%s’, 1, ‘Delimiter’, ‘,’); % cell array
 UTC = text{ 1 }{ 1 }; % dereference cell array and string to char

 % extract date from UTC

 text = textscan(UTC, ‘%s’, 1);
 mdy = text{ 1 }{ 1 };
 text = textscan(mdy , ‘%d’, ‘Delimiter’, ‘/’);
 month = text{ 1 }(2); % imported using european date format
 day = text{ 1 }(1); % imported using european date format
 year = text{ 1 }(3);

 % build YMD string

 if((month < 10) && (day < 10))
 filedate = strcat(num2str(year), num2str(0), num2str(month), num2str(0),
num2str(day));
 elseif((month < 10) && (day >= 10))
 filedate = strcat(num2str(year), num2str(0), num2str(month), num2str(day
));
 elseif((month >= 10) && (day < 10))
 filedate = strcat(num2str(year), num2str(month), num2str(0), num2str(day
));
 else
 filedate = strcat(num2str(year), num2str(month), num2str(day));
 end

fileroot = [filedate ‘-’ num2str(config)];

fclose(fidinit); % close file

end

detectEncounter.m (spatial window version)

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015
%
% This version includes the use of a spatial window
% Requires spatial window version of mergeEncounters.m

% detectEncounter detects encounters between records with different MMSIs

function [edata, stat] = detectEncounter(log, N, delS, config, totalstart)
% detect encounters

switch(config)

 case(1)

 101

 senslowr = 1; % config 1 & 3
 senshighr = 0; % config 1 & 3

 case(2)

 senslowr = 2; % config 2 & 4
 senshighr = 1; % config 2 & 4

 case(3)

 senslowr = 1; % config 1 & 3
 senshighr = 0; % config 1 & 3

 case(4)

 senslowr = 2; % config 2 & 4
 senshighr = 1; % config 2 & 4

end

senshigh = 9;
senslow = 2;

stat.totalenc = 0;
stat.totalgrp = 0;
stat.recproc = 0;

encounterset = 0;

recordsublistend = zeros(log.latsize, log.lonsize);
recordsublist = cell(log.latsize, log.lonsize, 1000);

disp(‘--’)
disp([‘Time sorting and dividing based on latitude and longitude : ‘ num2str(
log.recordlistend) ‘ records ‘])
disp(‘--’)

for tidx = 1 : log.recordlistend;

 if(mod(tidx, 100000) == 0)

 disp(‘--’)
 disp([‘Record #: ‘ num2str(tidx) ‘ of ‘ num2str(log.recordlistend)])
 disp(‘--’)

 end

 temp = log.recordlist{ tidx }; % record to be sorted
 latidx = log.latidx(temp);
 lonidx = log.lonidx(temp);
 latdividx = log.latdividx(temp);
 londividx = log.londividx(temp);
 latsubdividx = log.latsubdividx(temp);
 lonsubdividx = log.lonsubdividx(temp);
 latsubdiv2 = log.latsubdiv2(temp);
 lonsubdiv2 = log.lonsubdiv2(temp);
 underlat = false;
 underlon = false;
 overlat = false;
 overlon = false;

 recordsublistend(latidx, lonidx) = recordsublistend(latidx, lonidx) + 1;
 recordsublist{ latidx, lonidx, recordsublistend(latidx, lonidx) } = temp;

 if((latsubdiv2 > senshigh - senshighr) && (latsubdividx > senshigh) && (
latdividx > senshigh) && (latidx < log.latidxend)) % under lat

 recordsublistend(latidx + 1, lonidx) = recordsublistend(latidx + 1, lonidx) +
1;

 102

 recordsublist{ latidx + 1, lonidx, recordsublistend(latidx + 1, lonidx) } =
temp;
 underlat = true;

 end

 if((lonsubdiv2 > senshigh - senshighr) && (lonsubdividx > senshigh) && (
londividx > senshigh) && (lonidx < log.lonidxend)) % under lon
recordsublistend(latidx, lonidx + 1) = recordsublistend(latidx, lonidx + 1) + 1;

 recordsublistend(latidx, lonidx + 1) = recordsublistend(latidx, lonidx + 1) +
1;
 recordsublist{ latidx, lonidx + 1, recordsublistend(latidx, lonidx + 1) } =
temp;
 underlon = true;

 end

 if((latsubdiv2 < senslow + senslowr) && (latsubdividx < senslow) && (latdividx
< senslow) && (latidx > log.latidxstart)) % over lat

 recordsublistend(latidx - 1, lonidx) = recordsublistend(latidx - 1, lonidx) +
1;
 recordsublist{ latidx - 1, lonidx, recordsublistend(latidx - 1, lonidx) } =
temp;
 overlat = true;

 end

 if((lonsubdiv2 < senslow + senslowr) && (lonsubdividx < senslow) && (londividx
< senslow) && (lonidx > log.lonidxstart)) % over lon

 recordsublistend(latidx, lonidx - 1) = recordsublistend(latidx, lonidx - 1) +
1;
 recordsublist{ latidx, lonidx - 1, recordsublistend(latidx, lonidx - 1) } =
temp;
 overlon = true;

 end

 if((overlat == true) && (overlon == true))

 recordsublistend(latidx - 1, lonidx - 1) = recordsublistend(latidx - 1, lonidx
- 1) + 1;
 recordsublist{ latidx - 1, lonidx - 1, recordsublistend(latidx - 1, lonidx - 1)
} = temp;

 elseif((underlat == true) && (underlon == true))

 recordsublistend(latidx + 1, lonidx + 1) = recordsublistend(latidx + 1, lonidx
+ 1) + 1;
 recordsublist{ latidx + 1, lonidx + 1, recordsublistend(latidx + 1, lonidx + 1)
} = temp;

 elseif((overlat == true) && (underlon == true))

 recordsublistend(latidx - 1, lonidx + 1) = recordsublistend(latidx - 1, lonidx
+ 1) + 1;
 recordsublist{ latidx - 1, lonidx + 1, recordsublistend(latidx - 1, lonidx + 1)
} = temp;

 elseif((underlat == true) && (overlon == true))

 recordsublistend(latidx + 1, lonidx - 1) = recordsublistend(latidx + 1, lonidx
- 1) + 1;
 recordsublist{ latidx + 1, lonidx - 1, recordsublistend(latidx + 1, lonidx - 1)
} = temp;

 end

 103

end

for latidx = log.latidxstart : log.latidxend

 for lonidx = log.lonidxstart : log.lonidxend

 disp(‘--’)
 disp([‘Searching: Lat: ‘ num2str(latidx) ‘, Long: ‘ num2str(lonidx) ‘,’])
 disp(‘--’)

 for latdividx = 1 : log.divideby

 for londividx = 1 : log.divideby

 sdata = AISData;
 sdata.N = N;
 sdata.delS = delS;
 sdata.endofData = zeros(1, 86400);

 recordcount = 0;
 endofTime = 0;

 for tidx = 1 : recordsublistend(latidx, lonidx);

 temp = recordsublist{ latidx, lonidx, tidx }; % record to be sorted

 % Normal check lat / lon
 if((latdividx == log.latdividx(temp)) && (londividx ==
log.londividx(temp)))

 sdata.endofData(temp.tsec) = sdata.endofData(temp.tsec) + 1;
% increment
 sdata.recordArray{ sdata.endofData(temp.tsec), temp.tsec } =
temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 % Four checks with lat normal
 elseif(((latdividx) == log.latdividx(temp)) && ...
 ((londividx + 1) == log.londividx(temp)) && ...
 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif(((latdividx) == log.latdividx(temp)) && ...
 ((londividx - 1) == log.londividx(temp)) && ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...

 104

 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif(((latdividx) == log.latdividx(temp)) && ...
 (londividx == log.divideby) && (log.londividx(temp) == 1)
&& ...
 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif(((latdividx) == log.latdividx(temp)) && ...
 (londividx == 1) && (log.londividx(temp) == log.divideby)
&& ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 % five checks with Lat + 1 = record
 elseif(((latdividx + 1) == log.latdividx(temp)) && ...
 ((londividx) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 105

 elseif(((latdividx + 1) == log.latdividx(temp)) && ...
 ((londividx + 1) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr) && ...
 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif(((latdividx + 1) == log.latdividx(temp)) && ...
 ((londividx - 1) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr) && ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif(((latdividx + 1) == log.latdividx(temp)) && ...
 (londividx == log.divideby) && (log.londividx(temp) == 1)
&& ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr) && ...
 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif(((latdividx + 1) == log.latdividx(temp)) && ...
 (londividx == 1) && (log.londividx(temp) == log.divideby)
&& ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr) && ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 106

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 % five check with lat - 1 = record
 elseif(((latdividx - 1) == log.latdividx(temp)) && ...
 ((londividx) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif(((latdividx - 1) == log.latdividx(temp)) && ...
 ((londividx + 1) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr) && ...
 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif(((latdividx - 1) == log.latdividx(temp)) && ...
 ((londividx - 1) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr) && ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 107

 end

 elseif(((latdividx - 1) == log.latdividx(temp)) && ...
 (londividx == log.divideby) && (log.londividx(temp) == 1)
&& ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr) && ...
 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif(((latdividx - 1) == log.latdividx(temp)) && ...
 (londividx == 1) && (log.londividx(temp) == log.divideby)
&& ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr) && ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end
 % five check with latdiv 10 = record latdiv = 1
 elseif((latdividx == log.divideby) && (log.latdividx(temp) == 1
) && ...
 ((londividx) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif((latdividx == log.divideby) && (log.latdividx(temp) == 1
) && ...
 ((londividx + 1) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr) && ...

 108

 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif((latdividx == log.divideby) && (log.latdividx(temp) == 1
) && ...
 ((londividx - 1) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr) && ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif((latdividx == log.divideby) && (log.latdividx(temp) == 1
) && ...
 (londividx == log.divideby) && (log.londividx(temp) == 1)
&& ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr) && ...
 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif((latdividx == log.divideby) && (log.latdividx(temp) == 1
) && ...
 (londividx == 1) && (log.londividx(temp) == log.divideby)
&& ...
 (log.latsubdividx(temp) < senslow) && ...
 (log.latsubdiv2(temp) < senslow + senslowr) && ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...

 109

 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 % five check with latdiv = 1 and record latdiv = 10
 elseif((latdividx == 1) && (log.latdividx(temp) == log.divideby
) && ...
 ((londividx) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif((latdividx == 1) && (log.latdividx(temp) == log.divideby
) && ...
 ((londividx + 1) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr) && ...
 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif((latdividx == 1) && (log.latdividx(temp) == log.divideby
) && ...
 ((londividx - 1) == log.londividx(temp)) && ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr) && ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 110

 endofTime = temp.tsec;

 end

 elseif((latdividx == 1) && (log.latdividx(temp) == log.divideby
) && ...
 (londividx == log.divideby) && (log.londividx(temp) == 1)
&& ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr) && ...
 (log.lonsubdividx(temp) < senslow) && ...
 (log.lonsubdiv2(temp) < senslow + senslowr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 elseif((latdividx == 1) && (log.latdividx(temp) == log.divideby
) && ...
 (londividx == 1) && (log.londividx(temp) == log.divideby)
&& ...
 (log.latsubdividx(temp) > senshigh) && ...
 (log.latsubdiv2(temp) > senshigh - senshighr) && ...
 (log.lonsubdividx(temp) > senshigh) && ...
 (log.lonsubdiv2(temp) > senshigh - senshighr))

 sdata.endofData(temp.tsec) = ...
 sdata.endofData(temp.tsec) + 1; % increment
 sdata.recordArray{ sdata.endofData(temp.tsec), ...
 temp.tsec } = temp;

 recordcount = recordcount + 1;

 if(temp.tsec > endofTime)

 endofTime = temp.tsec;

 end

 end

 end

 if(recordcount > 0)

 disp(‘--’)
 disp([‘LATITUDE = ‘ num2str(latidx - log.latoffset) ‘.’ num2str(
latdividx - 1)])
 disp([‘LONGITUDE = ‘ num2str(lonidx - log.lonoffset) ‘.’ num2str(
londividx - 1)])
 disp([‘RECORDS TO CHECK: ‘ num2str(recordcount)])
 disp(‘--’)

 stat.recproc = 0;

 disp(‘Checking for duplicate records... please wait’)

 for tidx = 1 : endofTime

 111

 for ridx = 1 : (sdata.endofData(tidx) - 1) % each time

 if(~isempty(sdata.recordArray{ ridx, tidx }))

 if(mod(ridx, 1000) == 0)

 disp([‘Checking record # : ‘ num2str(ridx)])

 end

 MMSI = sdata.recordArray{ ridx, tidx }.MMSI;
 Long = sdata.recordArray{ ridx, tidx }.Long;
 Lat = sdata.recordArray{ ridx, tidx }.Lat;
 time = sdata.recordArray{ ridx, tidx }.tsec;

 for didx = (ridx + 1) : sdata.endofData(tidx);

 if(~isempty(sdata.recordArray{ didx, tidx }))

 if((MMSI == sdata.recordArray{ didx, tidx
}.MMSI) && ...
 (Long == sdata.recordArray{ didx, tidx
}.Long) && ...
 (Lat == sdata.recordArray{ didx, tidx
}.Lat) && ...
 (time == sdata.recordArray{ didx, tidx
}.tsec)) % duplicate found

 sdata.recordArray{ didx, tidx } = []; %
delete record

 end

 end

 end

 end

 end

 end

 disp(‘Encounter detections in progress... please wait.’)

 for tidx = 1 : 86400 % for each time

 for lidx = 1 : sdata.endofData(tidx) % for each item in list

 newRecord = sdata.recordArray{ lidx, tidx }; % read new
record

 if(~isempty(newRecord))

 sdata.edetect(newRecord); % detect encounters for this
record

 stat.recproc = stat.recproc + 1;

 if(mod(stat.recproc, 1000) == 0)

 disp(‘--
------------------------’)
 disp([‘Record #: ‘ num2str(stat.recproc) ‘ of ‘
num2str(recordcount)])
 disp(‘--
------------------------’)
 disp(‘--

 112

--------’)
 disp([‘ENCOUNTERS = ‘ num2str(
sdata.totalNumEncounters)])
 disp([‘GROUPS = ‘ num2str(sdata.numEncounterGroups
)])
 disp(‘--
--------’)

 totaltime = toc(totalstart);
 disp([‘Time elapsed in seconds for config #: ‘
num2str(config) ‘ = ‘ num2str(totaltime)])

 end

 end

 end

 end

 if(sdata.totalNumEncounters > 0)

 stat.totalenc = stat.totalenc + sdata.totalNumEncounters;
 stat.totalgrp = stat.totalgrp + sdata.numEncounterGroups;
 disp(‘--’)
 disp([‘TOTAL ENCOUNTERS = ‘ num2str(stat.totalenc)])
 disp([‘TOTAL GROUPS = ‘ num2str(stat.totalgrp)])
 disp(‘--’)
 encounterset = encounterset + 1;
 edata.encounterlist{ encounterset } = sdata.encounterlist;

 end
 end

 end
 end
 end
end

 disp(‘--’)
 disp([‘TOTAL ENCOUNTERS = ‘ num2str(stat.totalenc)])
 disp([‘TOTAL GROUPS = ‘ num2str(stat.totalgrp)])
 disp(‘--’)
 clear sdata

end

mergeEncounters.m (spatial window version)

% Michael Hanna
% Naval Postgraduate School
% Thesis Date June 2015

% mergeEncounters identifies and removes duplicate encounters and groups
% This is the spatial window version
% The spatial window version of encounterDetect.m is also required.

function [sdata] = mergeEncounters(edata, config, totalstart)

 % merge encounterlists
 sdata = AISData; % create object
 encgroupsidx = 0;
 encgroups = [];
 colend = zeros(1, 10000);

 [row, col] = size(edata.encounterlist);
 encounterset = col;

 113

 for idx = 1 : encounterset

 [row, col, z] = size(edata.encounterlist{ idx });

 if(mod(idx, 1000) == 0)

 disp([‘Merging encounters from set #: ‘ num2str(idx) ‘ of ‘ num2str(
encounterset)])

 end

 for ridx = 1 : row % each encounter group

 found_group = false;
 empty_flag = true;
 colidx = 0;

 for eidx = 1 : encgroupsidx; % each existing indexed group

 MMSIi = edata.encounterlist{ idx }{ ridx, 1, 1 }.MMSI;
 MMSIj = edata.encounterlist{ idx }{ ridx, 1, 2 }.MMSI;
 if(((encgroups{ eidx }.MMSIi == MMSIi) && (encgroups{ eidx }.MMSIj
== MMSIj)) || ...
 ((encgroups{ eidx }.MMSIi == MMSIj) && (encgroups{ eidx
}.MMSIj == MMSIi))) % matches index

 while((~isempty(edata.encounterlist{ idx }{ ridx, colidx + 1, 1 }
)))

 empty_flag = false;
 colend(eidx) = colend(eidx) + 1;
 colidx = colidx + 1;

 sdata.encounterlist{ eidx, colend(eidx), 1 } =
edata.encounterlist{ idx }{ ridx, colidx, 1 };
 sdata.encounterlist{ eidx, colend(eidx), 2 } =
edata.encounterlist{ idx }{ ridx, colidx, 2 };
 sdata.encounterlist{ eidx, colend(eidx), 3 } =
edata.encounterlist{ idx }{ ridx, colidx, 3 };

 found_group = true;

 if(colidx == col)

 break

 end

 end

 break

 end

 end

 if(found_group == false) % create new entry in index and store encounters

 if(~isempty(edata.encounterlist{ idx }{ ridx, colidx + 1, 1 }))

 while((~isempty(edata.encounterlist{ idx }{ ridx, colidx + 1, 1 }
)))

 if(empty_flag == true)

 encgroupsidx = encgroupsidx + 1;

 end

 114

 empty_flag = false;
 colend(encgroupsidx) = colend(encgroupsidx) + 1;
 colidx = colidx + 1;

 sdata.encounterlist{ encgroupsidx, colend(encgroupsidx), 1 } =
edata.encounterlist{ idx }{ ridx, colidx, 1 };
 sdata.encounterlist{ encgroupsidx, colend(encgroupsidx), 2 } =
edata.encounterlist{ idx }{ ridx, colidx, 2 };
 sdata.encounterlist{ encgroupsidx, colend(encgroupsidx), 3 } =
edata.encounterlist{ idx }{ ridx, colidx, 3 };

 encgroups{ encgroupsidx }.MMSIi = sdata.encounterlist{
encgroupsidx, 1, 1 }.MMSI;
 encgroups{ encgroupsidx }.MMSIj = sdata.encounterlist{
encgroupsidx, 1, 2 }.MMSI;

 if(colidx == col)

 break

 end

 end

 end

 end

 end
 end

 % for each encounter list remove duplicates

 totalencountercount = 0;
 [row, col, z] = size(sdata.encounterlist);

 for ridx = 1 : row % for each group

 disp([‘Searching for duplicate encounters in group #: ‘ num2str(ridx)])

 deleted = 0;

 for cidx = 1 : (col - 1)

 if(~isempty(sdata.encounterlist{ ridx, cidx, 1 }))

 MMSIi = sdata.encounterlist{ ridx, cidx, 1 }.MMSI;
 MMSIj = sdata.encounterlist{ ridx, cidx, 2 }.MMSI;
 Longi = sdata.encounterlist{ ridx, cidx, 1 }.Long;
 Longj = sdata.encounterlist{ ridx, cidx, 2 }.Long;
 Lati = sdata.encounterlist{ ridx, cidx, 1 }.Lat;
 Latj = sdata.encounterlist{ ridx, cidx, 2 }.Lat;
 timei = sdata.encounterlist{ ridx, cidx, 1 }.tsec;
 timej = sdata.encounterlist{ ridx, cidx, 2 }.tsec;

 for didx = (cidx + 1) : col

 if(~isempty(sdata.encounterlist{ ridx, didx, 1 }))

 if((((MMSIi == sdata.encounterlist{ ridx, didx, 1 }.MMSI) &&
...
 (Longi == sdata.encounterlist{ ridx, didx, 1 }.Long) &&
...
 (Lati == sdata.encounterlist{ ridx, didx, 1 }.Lat) &&
...
 (timei == sdata.encounterlist{ ridx, didx, 1 }.tsec))
&& ...
 ((MMSIj == sdata.encounterlist{ ridx, didx, 2 }.MMSI)

 115

&& ...
 (Longj == sdata.encounterlist{ ridx, didx, 2 }.Long) &&
...
 (Latj == sdata.encounterlist{ ridx, didx, 2 }.Lat) &&
...
 (timej == sdata.encounterlist{ ridx, didx, 2 }.tsec))
) || ...
 (((MMSIi == sdata.encounterlist{ ridx, didx, 2 }.MMSI
) && ...
 (Longi == sdata.encounterlist{ ridx, didx, 2 }.Long) &&
...
 (Lati == sdata.encounterlist{ ridx, didx, 2 }.Lat) &&
...
 (timei == sdata.encounterlist{ ridx, didx, 2 }.tsec))
&& ...
 ((MMSIj == sdata.encounterlist{ ridx, didx, 1 }.MMSI)
&& ...
 (Longj == sdata.encounterlist{ ridx, didx, 1 }.Long) &&
...
 (Latj == sdata.encounterlist{ ridx, didx, 1 }.Lat) &&
...
 (timej == sdata.encounterlist{ ridx, didx, 1 }.tsec))
)) % duplicate found

 % disp(‘Duplicate found. Deleted.’)
 sdata.encounterlist{ ridx, didx, 1 } = []; % delete encounter
 sdata.encounterlist{ ridx, didx, 2 } = [];
 sdata.encounterlist{ ridx, didx, 3 } = 0;
 deleted = deleted + 1;

 end

 end

 end

 end

 end

 encountercount = 0;

 disp(‘counting encounters...’)

 for idxcnt = 1 : col

 if(~isempty(sdata.encounterlist{ ridx, idxcnt, 1 }))

 encountercount = encountercount + 1;

 end

 end

 disp([‘Encounters found in group # ‘ num2str(ridx) ‘ of ‘ num2str(row) ‘: ‘
num2str(encountercount)])
 disp([‘Encounters deleted: ‘ num2str(deleted)])
 totalencountercount = totalencountercount + encountercount;

 disp([‘Searching for duplicate entries in group #: ‘ num2str(ridx)])

 deleted = 0;

 for cidx = 1 : (col - 1)

 if(~isempty(sdata.encounterlist{ ridx, cidx, 1 }))

 MMSI = sdata.encounterlist{ ridx, cidx, 1 }.MMSI;
 Long = sdata.encounterlist{ ridx, cidx, 1 }.Long;

 116

 Lat = sdata.encounterlist{ ridx, cidx, 1 }.Lat;
 time = sdata.encounterlist{ ridx, cidx, 1 }.tsec;

 for didx = (cidx + 1) : col

 if(~isempty(sdata.encounterlist{ ridx, didx, 1 }))

 if((MMSI == sdata.encounterlist{ ridx, didx, 1 }.MMSI) && ...
 (Long == sdata.encounterlist{ ridx, didx, 1 }.Long) &&
...
 (Lat == sdata.encounterlist{ ridx, didx, 1 }.Lat) &&
...
 (time == sdata.encounterlist{ ridx, didx, 1 }.tsec)) %
duplicate found

 % disp(‘Duplicate found. Deleted.’)
 sdata.encounterlist{ ridx, didx, 1 } = []; % delete encounter
 sdata.encounterlist{ ridx, didx, 3 } = 0;
 deleted = deleted + 1;

 end

 end

 end

 end

 end

 disp([‘Entries deleted: ‘ num2str(deleted)])

 deleted = 0;

 for cidx = 1 : (col - 1)

 if(~isempty(sdata.encounterlist{ ridx, cidx, 2 }))

 MMSI = sdata.encounterlist{ ridx, cidx, 2 }.MMSI;
 Long = sdata.encounterlist{ ridx, cidx, 2 }.Long;
 Lat = sdata.encounterlist{ ridx, cidx, 2 }.Lat;
 time = sdata.encounterlist{ ridx, cidx, 2 }.tsec;

 for didx = (cidx + 1) : col

 if(~isempty(sdata.encounterlist{ ridx, didx, 2 }))

 if((MMSI == sdata.encounterlist{ ridx, didx, 2 }.MMSI) && ...
 (Long == sdata.encounterlist{ ridx, didx, 2 }.Long) &&
...
 (Lat == sdata.encounterlist{ ridx, didx, 2 }.Lat) &&
...
 (time == sdata.encounterlist{ ridx, didx, 2 }.tsec)) %
duplicate found

 % disp(‘Duplicate found. Deleted.’)
 sdata.encounterlist{ ridx, didx, 2 } = []; % delete encounter
 sdata.encounterlist{ ridx, didx, 3 } = 0;
 deleted = deleted + 1;

 end

 end

 end

 end

 end

 117

 disp([‘Entries deleted: ‘ num2str(deleted)])
 totaltime = toc(totalstart);
 disp([‘Time elapsed in seconds for config #: ‘ num2str(config) ‘ = ‘ num2str(
totaltime)])

 end

 disp([‘Total Encounters found: ‘ num2str(totalencountercount)])

 sdata.totalencounters = totalencountercount;
 sdata.groups = row;
end

 118

THIS PAGE INTENTIONALLY LEFT BLANK

 119

LIST OF REFERENCES

[1] K. L. Barber, “NSG expeditionary architecture: harnessing big data,” National
Geospatial-Intelligence Agency Magazine: Pathfinder, vol. 10, no. 5, pp. 8–10,
Sept./Oct. 2012.

[2] T. D. Lash, “Uses of motion imagery in activity-based intelligence,” Proc. SPIE,
2013, vol. 8740, 874005 (May 16, 2013).

[3] C. Johnston (2013). Modernizing defense intelligence: object based production
and activity based intelligence [PowerPoint slides]. Retrieved from
https://info.publicintelligence.net/DIA-ActivityBasedIntelligence.pdf,” 2013.

[4] D. Meyerriecks (2012). Empowering intelligence integration: the (future) role of
ground [PowerPoint slides]. Retrieved from http://gsaw.org/wp-
content/uploads/2013/07/2012s08meyerriecks.pdf

[5] W. Raetz, “A new approach to graph analysis for activity based intelligence,”
Proc. IEEE Applied Imagery Pattern Recognition Workshop, Washington, DC,
pp. 1–8, 2012.

[6] U.S. Department of Homeland Security (DHS), “National plan to achieve
maritime domain awareness for the national strategy for maritime security,” DHS,
Washington, DC, Oct. 2005.

 [7] D. A. Goward, “Maritime domain awareness integration challenges,” United
States Coast Guard, Washington, DC, 2008.

[8] K. A. Tester, “A spatiotemporal clustering approach to maritime domain
awareness,” M.S. thesis, Dept. Electrical and Computer Eng., Naval Postgraduate
School, Monterey, CA, 2013.

[9] A. S. McAbee, “Traffic pattern detection using the hough transformation for
anomaly detection to improve maritime domain awareness,” M.S. thesis, Dept.
Electrical and Computer Eng., Naval Postgraduate School, Monterey, CA, 2013.

[10] J. J. Thomas and K. A. Cook, Illuminating the Path: The Research and
Development Agenda for Visual Analytics. Los Alamitos, CA: IEEE, 2005.

[11] G. Andrienko, N. Andrienko, S. Wrobel, P. Bak and D. Keim, Visual Analytics of
Movement. New York: Springer, 2013.

[12] M. Riveiro, “Visual analytics for maritime domain detection,” Ph.D. dissertation,
Studies in Technology 46, Orebro Univ., Orebro, Sweden, 2011.

 120

[13] Y. Fischer and A. Bauer, “Object-oriented sensor data fusion for wide maritime
surveillance,” Proc. Intl. Waterside Security Conference, pp. 1–6, 2010.

[14] R. Scheepens, N. Willems, H. Van De Wetering and J. J. van Wijk, “Interactive
visualization of multivariate trajectory data with density maps,” in Proc. IEEE
Pacific Visualization Symposium, Hong Kong, China, pp. 147–154, 2011.

[15] C. Tominski, H. Schumann, G. Andrienko and N. Andrienko, “Stacking-Based
Visualization of Trajectory Attribute Data,” IEEE Transactions on Visualization
and Computer Graphics, vol. 18, pp. 2565–2574, 2012.

[16] M. Davenport, “Literature and product review of visual analytics for maritime
awareness,” Ottawa, ON: Defense Research and Development Canada, Oct. 2009.

[17] P. v. de Laar, J. Tretmans, M. Borth and Embedded Systems Institute, Situation
Awareness with Systems of Systems. New York: Springer, 2013.

[18] J. Llinas and J. Scrofani, “Foundational Technologies for Activity-based
intelligence: a review of the literature ,” Naval Postgraduate School, Monterey,
CA, Feb. 2014.

[19] M. Phillips, (2012, Sept. 28). A brief overview of activity based intelligence and
human domain analytics, Trajectory [Online].
http://trajectorymagazine.com/defense-intelligence/item/1369-human-domain-
analytics.html

[20] K. Quinn, (Winter 2012). A better toolbox: analytic methodology has evolved
significantly since the cold war, Trajectory [Online].
http://trajectorymagazine.com/civil/item/1349-a-better-toolbox.html

[21] G. Miller, (2013, July 8). Activity-based intelligence uses metadata to map
adversary networks, Defense News [Online].
http://archive.defensenews.com/article/20130708/C4ISR02/307010020/Activity-
Based-Intelligence-Uses-Metadata-Map-Adversary-Networks

[22] D. B. Cousins, D. J. Weishar and J. B. Sharkey, “Intelligence collection for
counter terrorism in massive information content,” in Proc. Aerospace
Conference, vol. 5, pp. 3273–3282, 2004.

[23] G. Andrienko, N. Andrienko and U. Demsar, “Space, time and visual analytics,”
Intl. Journal of Geographical Information Science, vol. 24, no. 10, pp. 1577–
1600, 2010.

[24] E. Blasch, A. Steinberg, S. Das, J. Llinas, Chee Chong, O. Kessler, E. Waltz and
F. White, “Revisiting the JDL model for information exploitation,” in 16th
International Conference Information Fusion, Istanbul, Turkey, pp. 129–136,
2013.

 121

[25] M. Ward, G. G. Grinstein and D. Keim, Interactive Data Visualization:
Foundations, Techniques, and Applications. Natick, MA: A K Peters, 2010.

[26] C. Ware, Information Visualization: Perception for Design. Waltham, MA:
Morgan Kaufmann, 2013.

[27] I. H. Witten, E. Frank and M. A. Hall, Data Mining: Practical Machine Learning
Tools and Techniques. Burlington, MA: Morgan Kaufmann, 2011.

[28] T. H. Cormen, Algorithms Unlocked. Cambridge, Massachusetts: The MIT Press,
2013.

[29] P. Laube, M. Kreveld and S. Imfeld, “Finding REMO - detecting relative motion
patterns in geospatial lifelines,” Developments in Spatial Data Handling, P.
Fisher, Ed., New York,: Springer, pp. 201–215, 2005.

[30] P. Bak, M. Marder, S. Harary, A. Yaeli and H. Ship, “Scalable detection of
spatiotemporal encounters in historical movement data,” in Computer Graphics
Forum, vol. 31, no. 3, pp. 915–924, 2012.

[31] S. Dodge, R. Weibel and A. Lautenschutz, “Towards a taxonomy of movement
patterns,” Information Visualization, vol. 7, no. 3, pp. 240–252, 2008.

[32] G. Andrienko, N. Andrienko and M. Heurich, “An event-based conceptual model
for context-aware movement analysis,” Intl. Journal of Geographical Information
Science, vol. 25, no. 9, pp. 1347–1370, 2011.

[33] D. Orellana, M. Wachowicz, N. Andrienko and G. Andrienko, “Uncovering
interaction patterns in mobile outdoor gaming,” Intl. Conf. on Adv. Geographic
Information Systems & Web Services, Cancun, Mexico, pp. 177–182, 2009.

[34] G. Andrienko, N. Andrienko, P. Bak and D. Keim, “A conceptual framework and
taxonomy of techniques for analyzing movement,” Journal of Visual Languages
and Computing, vol. 22, no. 3, pp. 213–232, 2011.

[35] J. Gudmundsson, M. v. Kreveld and B. Speckmann, “Efficient detection of
patterns in 2D trajectories of moving points,” GeoInformatica, vol. 11, no. 2, pp.
195–215, 2007.

[36] T. H. Cormen, Introduction to Algorithms. Cambridge, Mass.: MIT Press, 2009.

[37] N. Arundale, AisDecoder. [Online]. Available:
http://nmearouter.com/docs/ais/ais_decoder_v3_downloads.html

[38] Raymond, E. S., AIVDM/AIVDO protocol decoding. [Online]. Available:
http://catb.org/gpsd/AIVDM.html

 122

[39] G. Andrienko, V-Analytics. [Online]. Available: http://geoanalytics.net/V-
Analytics

 123

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

